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Preface

This report was commissioned by the Office of Advanced Scientific
Computing Research (OASCR) at the Department of Energy (DOE). This
office, which has broad responsibilities for applications of mathematics
and computing to all fields of science of importance to DOE, sought ad-
vice as specified in the charge to the committee:

The study will recommend mathematical sciences research activities to
the Department of Energy that will enable science to make effective use
of the large amount of existing genomic information and the much larger
and more diverse collections of structural and functional genomic infor-
mation that are being created. The recommended activities should cover
both current research needs and also include some higher-risk research
that might lead to innovative approaches for the future.

In discussions with OASCR officials, it became apparent that the in-
tent was to sponsor a broad, scientifically based view of the opportunities
that now lie at the interface between the mathematical sciences and biol-
ogy. “The mathematical sciences” was to be broadly defined to include
statistics, computational science, and all areas of applied mathematics.1
Although the Department of Energy is an agency with deep roots in ap-
plying the mathematical sciences to the physical sciences—as well as a
pioneer in selected biological applications such as protein-structure de-

1An upcoming National Academies report from the Computer Science and Telecommuni-
cations Board will address the interface between computer science and biology.

vii
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viii PREFACE

termination and genome sequencing—there was no intent that the com-
mittee analyze specific DOE programs or restrict itself to DOE’s existing
programmatic boundaries. Hence, the recommendations are stated in gen-
eral terms and are applicable to programs at any of the funding organiza-
tions whose missions encompass the mathematical sciences, biology, and
the interactions between these fields, including but not limited to DOE.
The committee has worked very hard to provide substantiated guidance
about the scientific opportunities that these organizations are poised to
support.

This report has been reviewed in draft form by individuals chosen for
their diverse perspectives and technical expertise, in accordance with pro-
cedures approved by the NRC’s Report Review Committee. The purpose
of this independent review is to provide candid and critical comments
that will assist the institution in making its published report as sound as
possible and to ensure that the report meets institutional standards for
objectivity, evidence, and responsiveness to the study charge. The review
comments and draft manuscript remain confidential to protect the integ-
rity of the deliberative process. We wish to thank the following individu-
als for their review of this report:

James Collins, Boston University,
Terry Gaasterland, Rockefeller University,
David Haussler, University of California at Santa Cruz,
Douglas Lauffenburger, Massachusetts Institute of Technology, and
Simon Levin, Princeton University.

Although the reviewers listed above have provided many construc-
tive comments and suggestions, they were not asked to endorse the con-
clusions or recommendations, nor did they see the final draft of the report
before its release. The review of this report was overseen by Ronald Dou-
glas, Texas A&M University. Appointed by the National Research Coun-
cil, he was responsible for making certain that an independent examina-
tion of this report was carried out in accordance with institutional
procedures and that all review comments were carefully considered. Re-
sponsibility for the final content of this report rests entirely with the
authoring committee and the institution.

In addition, the committee thanks Mark Daly, Avner Friedman,
and Alan Perelson for their remarks and suggestions during the study
process.
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1

Executive Summary

The exponentially increasing amounts of biological data at all scales
of biological organization, along with comparable advances in computing
power, create the potential for scientists to construct quantitative, predic-
tive models of biological systems. Broad success would transform basic
biology, medicine, agriculture, and environmental science. The main push
in biology during the coming decades will be toward an increasingly
quantitative understanding of biological function; the rate at which
progress occurs will depend on a deeper, effective implementation of
quantitative methods and a quantitative perspective within the biological
sciences.

The success of this transformation will depend in part on the creation
and nurturance of a robust interface between biology and mathematics,
which should become a top priority of science policy. The policy chal-
lenges will be substantial and multifaceted. The interface between biol-
ogy and mathematics is an interdisciplinary frontier sprawling across a
vast expanse of intellectual terrain that is extraordinarily diverse, indis-
tinctly marked, and growing. The committee will explore this frontier in
the chapters that follow. While it is not possible to capture all of the ter-
rain in a single study, the committee attempted to identify striking fea-
tures that exemplify the opportunities and also the challenges.

RECOMMENDATIONS

The committee offers five recommendations.
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2 MATHEMATICS AND 21ST CENTURY BIOLOGY

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should be receptive to re-
search proposals that pertain to any level of biological organi-
zation: molecules, cells, organisms, populations, and ecosys-
tems. While much current research can be productively confined
to a particular level, there are also substantial challenges and
rewards associated with analyzing interactions between levels.

The biological sciences are already becoming more quantitative and
data-intensive; indeed, the explosion of data production and the potential
for quantitative analysis replete with estimates of precision are the most
visible qualities of the biological sciences of the 21st century. Progress in
the biosciences will increasingly depend on deep and broad integration of
mathematical analysis into studies at all levels of biological organization.
No one level of organization stands out as offering singularly attractive
opportunities for mathematical applications. The challenges faced at dif-
ferent levels have distinctive characteristics, but there are also unifying
themes. Some chapters of the report are organized around the different
levels of biological organization, but others—including “The Nature of
the Field,” “Historical Successes,” and “Crosscutting Themes”—look
more broadly at the commonalities of past and current applications of
mathematics to biology.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should give preference to
proposals that indicate a clear understanding of the specific bio-
logical objectives of the research and include a realistic plan for
how mathematicians and biologists will collaborate to achieve
them.

The committee regards the interface between mathematics and biol-
ogy as biology-driven. Research that proceeds by abstracting biological
problems away from specific biological contexts and explores the proper-
ties of the resultant abstraction is less likely to be effective than research
that stays more tightly focused on actual biological questions. However,
to maximize productivity, the most powerful and appropriate mathemati-
cal tools should be selected to address important biological problems, and
this quest benefits from involving the dedicated expertise of mathemati-
cal scientists. There are also many cases where results developed within
pure mathematics, or in applications of mathematics to physical systems
and engineering, later find powerful applications to biology, but this pro-
cess, too, is most productive when it is biology-driven. Furthermore, the
committee was impressed with the sheer scope of mathematical applica-
tions to biology and the diverse types of mathematics that are playing
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EXECUTIVE SUMMARY 3

important roles in the life sciences. Hence, it strongly cautions against
prejudging which subfields of mathematical research are most likely to
contribute to biology.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should give priority to re-
search that addresses intrinsic characteristics of biological sys-
tems that reappear at many levels of biological organization:
high dimensionality, heterogeneity, robustness, and the exist-
ence of multiple spatial and temporal scales.

Biological systems at all scales are characterized by high dimensional-
ity, heterogeneity, robustness to perturbations, and the existence of
strongly interacting, highly disparate spatial and temporal scales. While
these characteristics also appear in some physical systems that have been
successfully modeled mathematically—the modeling of heterogeneous
and multiscale phenomena is in particular a vibrant topic of mathematical
and engineering research—the modeling of biological systems will require
greatly expanded capabilities in these areas. As is widely documented in
the report, the characteristics enumerated above recur at all levels of bio-
logical organization, from molecules to ecosystems.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should support the refine-
ment of general-purpose tools whose broad biological utility
has already been established. Such research might require spe-
cialized review criteria, particularly when the focus is on tool
enhancement rather than breakthrough research.

Although the committee feels strongly that mathematical research
based on premature abstraction of biological problems risks irrelevance,
there are more and more instances where mathematical tools have already
proven their utility in a broad range of biological applications. Many ex-
amples are described in this report. In some instances, as biological appli-
cations of these tools have expanded, limitations on their effectiveness
have become apparent. Nonetheless, there are opportunities here for ef-
fective and important mathematical research that is less tightly tied to
particular biological applications than is typically the case. Such research
will have varying degrees of innate mathematical interest but can have an
important impact on biology.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should place increased em-
phasis on funding mechanisms and novel approaches to the
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4 MATHEMATICS AND 21ST CENTURY BIOLOGY

organization of interdisciplinary research. The goal should be
to foster effective collaboration between mathematical scientists
and bioscientists by working to eliminate barriers posed by in-
adequate communication, disparate timescales for achieving
research objectives, inequitable recognition of contributors to
interdisciplinary projects, and cultural divisions within univer-
sities, research institutes, and national laboratories.

The committee’s charge was to explore research areas at the interface
between mathematics and biology that are likely to offer particular prom-
ise in the years ahead. Hence, it did not undertake a broad examination of
funding mechanisms, training, and the organization of interdisciplinary
research projects. However, these issues came up so frequently in its de-
liberations and are so central to the future prosperity of research at this
interface that the committee recommends they receive increased atten-
tion. Given the many cultural factors that impede optimum collaboration
between mathematical scientists and bioscientists, it would be desirable
to explore a variety of mechanisms for overcoming them or minimizing
their deleterious effects.

RATIONALE FOR THE RECOMMENDATIONS

The committee’s recommendations are notable both for what they say
and what they omit. There is, for example, no call in this report for a major
initiative to develop an in silico cell or any other major, potentially
multiagency initiative with a specified goal. A recommendation suggest-
ing such a high level of administrative organization so singularly directed
seems premature at the least and, the committee believes, would likely be
counterproductive at this time. The committee opted for a patient, broadly
based, vigorous effort to expand research at the interface between math-
ematics and biology rather than for a commitment to a small number of
high-profile projects with monolithic goals. Because this decision was per-
haps the most consequential outcome of the committee’s deliberation, it is
appropriate to summarize the committee’s rationale.

The committee undertook this study at a time of dramatic change
throughout the biological sciences. During the past decade, a “perfect
storm” of developments has touched off broad changes in biology. Unlike
most past discontinuities in the biosciences, this one was not triggered by
major scientific discoveries: It was triggered instead by a confluence of
new technologies that has swept broadly across science and society, as
well as by developments internal to biology. Key contributors to this per-
fect storm include the following:

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


EXECUTIVE SUMMARY 5

• The development and widespread adoption of automated instruments that
produce high fluxes of digital data relevant to all levels of biological organization.
These instruments have transformed DNA sequencing; analysis of mRNA
and protein populations; determination of protein structures; structural
and functional imaging of subcellular organelles, cells, tissues, organs,
and whole organisms; electrophysiology; analysis of genetic variation in
populations; and ecological changes across the entire biosphere.

• The arrival of networked, high-performance computing systems on the
desktops of all biologists. This sudden access to computing resources—a
phenomenon whose roots lie in the same technological revolution that
enabled the development of the high-throughput instruments discussed
above—has infused quantitative methods into all facets of biological re-
search. High-performance computing impacts the whole range of research
activities, from the low-level processing of raw data and the development
of new theoretical frameworks to the organization, dissemination, and
analysis of large biological databases.

• The success of the Human Genome Project in establishing accurate, whole-
genome sequences as central resources in biology. Genome sequences have
given biologists their first taste of “complete knowledge” and stimulated
intensive efforts to improve our ability to recognize genes in genomic se-
quence, to discern their functions, and to infer their evolutionary histo-
ries. Genome sequences have also led to a renewed appreciation of the
molecular unity of life. The conservation of nucleotide and amino acid
sequences and the associated conservation of molecular functions have
made sequence comparison the centerpiece of genome analysis. Hence,
the analytical challenges in genomics are expanding with O(n2) complex-
ity, where n is the number of known nucleotides in the DNA sequence—
a number that is itself growing exponentially.

• The maturation of a phase of molecular and cellular biology during which
biologists acquired robust, albeit largely qualitative, descriptions of the basic mo-
lecular pathways that allow the self-replication and development of organisms
and that govern their utilization of energy and interactions with their environ-
ments. This great flowering of the biological sciences gained momentum
following the discovery of the double helical structure of DNA. While
much productive research continues to expand upon and refine the basic
paradigms of the late 20th century, biology is also visibly in transition.
Bioscientists in many research areas recognize the need for a more quanti-
tative, integrated, and predictive understanding of living systems rather
than a simple expansion of current modes of biological analysis to encom-
pass ever more phenomena.

Collectively, these developments are transforming biology into a more
quantitative, data-intensive science, a transformation that has important
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6 MATHEMATICS AND 21ST CENTURY BIOLOGY

implications for the interface between mathematics and biology. As noted
in the Preface, the committee interpreted “mathematics” broadly so as to
include computational science and statistics, as well as all aspects of ap-
plied mathematics. Its study also spanned all levels of biological organi-
zation, from molecules to ecosystems. Given this breadth of view, it is not
surprising that the committee is impressed by the richness and diversity
of current research at the interface between mathematics and biology. That
richness and diversity pose a substantial challenge to science policy. Cer-
tainly a strong case can be made for increased policy attention to this in-
terdisciplinary frontier. However, in the committee’s view, it would be
unwise to channel this attention too narrowly into the pursuit of particu-
lar high-profile opportunities.

The tension between diversified efforts to strengthen important re-
search areas and the commitment of major resources to high-profile
projects is an enduring feature of the science-policy landscape. The Hu-
man Genome Project was perhaps an ideal model of a successful high-
profile project. Much as envisioned by the National Research Council
report Mapping and Sequencing the Human Genome,1  it led to a flourishing
of technical advances in our ability to analyze DNA and a much closer
connection between research on model experimental organisms and hu-
man biology. Too, it culminated in the generation of reference databases
that have become indispensable tools for everyday research on many or-
ganisms. These databases have also become critical frameworks around
which expanding knowledge of molecular and cellular processes can be
rationally organized. The Human Genome Project introduced high-
throughput technology to the biological sciences, which in turn led to a
profound change in how biological research is conducted and also to the
data-rich world where biologists now work that enables the introduction
of more quantitative approaches. On a philosophical level, the Human
Genome Project was big science in the service of small science. Through-
out its history, the project empowered rather than displaced small labo-
ratories as the engine of biological innovation, and in its aftermath it con-
tinues to do so.

Other science-policy initiatives that made more equivocal contribu-
tions also provide historical context for the committee’s recommendations.
For example, the War on Cancer of the late 1960s is often cited as a mis-
guided effort to concentrate resources on an ill-defined goal toward whose
achievement contemporary science offered no clear path. The mainstream

1National Research Council, Mapping and Sequencing the Human Genome, National Acad-
emy Press, Washington, D.C., 1988.
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EXECUTIVE SUMMARY 7

verdict on the War on Cancer holds that patient, diversified support for
molecular and cell biology would have been more appropriate than a
high-profile project organized around the easily articulated, practical
theme of eradicating cancer. However, even an initiative such as the War
on Cancer, much of whose rhetoric appears embarrassing in retrospect,
can be a powerful stimulant of needed changes in scientific priorities.
There is little doubt that the War on Cancer accelerated the diversification
of molecular biology beyond its bacterial roots, helped lay the foundation
for the recombinant-DNA revolution, and brought basic biology into
closer partnership with medicine. There were also collateral benefits from
the War on Cancer’s vigorous pursuit of a largely incorrect hypothesis,
which was that retroviruses were a major cause of human cancer. The
War on Cancer encouraged development of experimental techniques for
isolating and growing retroviruses and expanded knowledge about their
life cycles, which proved invaluable in confronting the AIDS epidemic.
Nonetheless, the committee does not believe that the possibility of collat-
eral or unexpected, unplanned, perhaps serendipitous contributions from
a high-profile project would be an effective way to bring quantitative
methods into the biological sciences and quantitative descriptions into
our understanding of biology.

In considering research opportunities at the interface between biol-
ogy and mathematics, these historical precedents—the Human Genome
Project and the War on Cancer—influenced the committee’s thinking
about a key policy question. Should funding agencies channel resources
into grand challenges such as these as a way of stimulating interactions
between mathematics and biology in a big way? It is not difficult to iden-
tify candidates for such grand challenges at all levels of biological organi-
zation: They would include the development of a comprehensive, predic-
tive computer model of a particular free-living cell, organ, or ecosystem.
At various levels of ambition, such initiatives are already under way. It is
also not difficult to see that the rapid expansion in biological data requires
a multiplicative, rather than merely an incremental, expansion in the num-
ber of researchers working on mathematical aspects of biology. In fact, a
narrowly defined, high-profile project like the two featured above might
slow the overall introduction of quantitative methods into the biological
sciences, might retard the general training of biologists in more quantita-
tive methods, and might not develop the range of mathematical applica-
tions that could transform many areas of biology. Mathematical scientists
and methods tuned to that particular grand challenge would, of course,
be greatly encouraged and benefit directly, and bioscientists involved in
the project could come to appreciate the role of mathematics. However,
the science-policy dilemma is whether or not biology is best served at this
time by the type of organized multiagency, multi-investigator coordina-
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tion—and focused infusion of resources—that made the Human Genome
Project a success. If defined ambitiously, an all-out effort to create a pre-
dictive computer model of a free-living cell—or any similar project at other
levels of biological organization—would require an enormous concentra-
tion of experimental, theoretical, and computational resources around a
well-specified, centrally sanctioned goal.

While recognizing the potential of such an initiative to stimulate coor-
dinated action in an underdeveloped research area, the committee opted
instead to recommend a long-term, broad, and diversified nurturance of
the interface between mathematics and biology. Two themes that recurred
during the committee’s deliberations influenced this choice—the primacy
of the biology problem and the lack of predictability.

Primacy of Biology

In applications of mathematics to biology, the committee returned
again and again to the primacy of the biological problem. The primary
goal of funding agencies and researchers working at the interface be-
tween mathematics and biology should be to solve particular biological
problems, not to accomplish particular feats in the mathematical descrip-
tion of living systems. Hence, an all-out effort to “understand” the bacte-
rium Escherichia coli or the yeast Saccharomyces cerevisiae, if undertaken,
should have biological goals. Perhaps a predictive computer model is
part of what is needed, but it should not be the central goal. Indeed, com-
puter modelers participating in such projects should be guided by the
biological objectives. Some modeling approaches will be more appropri-
ate to particular objectives than others. Both biological progress and
mathematical progress are likely to be optimized by intimate coupling of
whatever modeling is done to defined biological objectives. Implicit in
this view is the committee’s sense that we are far away from having an in
silico cell. A very large amount of experimental bioscience research
would be a prerequisite for the modeling, and a wide range of subcellu-
lar elements with their own daunting complexities might well have to be
tackled first, both to provide models or prototypes and test beds and to
facilitate understanding what is needed and what can be ignored in con-
structing a successful in silico model of a cell. An analogy with the his-
tory of artificial intelligence research may help clarify the committee’s
thinking. One could envision a “Turing test” for the in silico cell. To con-
duct such a test, an experimentalist would design manipulations and
measurements to be carried out on the target cells; results would then be
returned based on the experimental manipulation of real cells on the one
hand and their computer simulation on the other. For the simulator to
pass the Turing test, it should be impossible for the experimentalist to
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EXECUTIVE SUMMARY 9

devise manipulations and measurements that would distinguish between
the two sources of data. Grand as this challenge might be for 21st century
biology, we are too far from meeting it for it to be a dominant organizing
principle for current research. While some efforts in this direction are
clearly worthwhile, it should be kept in mind that premature efforts by
the artificial intelligence community to pass the original Turing test floun-
dered. So, too, would a present-day effort to meet the corresponding chal-
lenge of an in silico cell. Progress in artificial intelligence has depended
on breaking the ultimate task into many smaller, more accessible tasks,
each of which is approached with a variety of strategies. Similarly, the
committee concluded that contemporary biology would be best off adopt-
ing an incremental and diversified approach to the creation of more quan-
titative, predictive descriptions of living systems.

Unpredictability

The committee found the history of applications of mathematics to
biology to be full of unexpected turns and reciprocal influences on the
two fields and expects this dynamic to continue. Success in big-science
initiatives depends on an element of predictability about how areas of
science will develop. Certainly there was technical risk that the Human
Genome Project would prove premature, and there was even some risk
that genome sequences would prove so difficult to interpret that their
impact on biology would be minimal. Nonetheless, by the late 1980s, it
was abundantly clear that DNA sequencing was capable of providing
much useful information about biology, that there were open-ended op-
portunities to lower its cost and increase its throughput, and that genome
sequences would play a very important role in the future of biological
research. Similarly, it was apparent by the late 1960s that the successes of
the first decades of molecular biological research on bacteria should be
extended to eukaryotic and metazoan organisms. The committee is less
confident that the future directions of the interplay between mathematics
and biology can be reliably predicted in 2005. While it is confident that
mathematical methods will become steadily more deeply integrated into
biological research, the committee regards the directions in which the bio-
logical sciences will evolve in the decades ahead—and the detailed ways
in which mathematics will facilitate that evolution—to be highly uncer-
tain. The excitement that surrounds this area of scientific research stems
from a blend of opportunity and unpredictability. Many areas of biologi-
cal research are at points of instability. The ways in which these instabili-
ties resolve will shape the future of the relationship between mathematics
and biology.
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FUTURE PERSPECTIVE

The committee is confident that deepening interactions between math-
ematics and biology will transform the biosciences. Of equal interest is the
possibility that the areas of mathematics that interact most strongly with
biology will themselves be altered by these interactions. Indeed, much of
modern mathematics was shaped by four centuries of intimate interaction
with the physical sciences and engineering. As the prominence of the bio-
sciences increases—and as they interact more intensively with mathemat-
ics—a similar dynamic may be expected to occur. As discussed above,
biological processes have different characteristics than the processes com-
monly encountered in engineering and physical science. In comparison
with scientists involved in materials science, plasma physics, or cosmol-
ogy, bioscientists work on muddier problems. The vast scales of time and
space that characterize the world of biology are complemented by non-
quantitative, organizational features that are so extraordinarily complex.
The number of different interacting components is huge (ranging up to
millions or even billions of entities), and they can all possess individual
characteristics and contingent properties and be influenced by historical
events. The systems are typically far from equilibrium or even stable
steady states. High-order interactions between the components are the
rule: The amount of feedback regulation in the simplest cell greatly ex-
ceeds that presently incorporated into devices designed by humans. (In-
deed, it is this reliance on feedback regulation that accounts for the ro-
bustness of living systems.) Small events at one spatial or temporal scale
often have large effects at another very different scale. These generaliza-
tions apply to cells, whose components are molecules, and also to ecosys-
tems, whose components are commonly taken to be populations of indi-
vidual members of many species. Calculus, the mathematical properties
of continuous, very small elements, has been the essential language for
describing the physical world and the language employed in the physical
sciences, but biology has discrete elements, and the quantitative language
of the computational and information sciences appears far more suited to
be the language of biology. As a consequence of these many ways in which
biology differs from the physical sciences, the committee looks forward to
its many influences on mathematics, including some explicitly new math-
ematics.

An important goal in developing this report was to illustrate, in di-
verse contexts, these distinctive characteristics of biological systems. They
may appear intimidating to nonbiologists at first, but on closer inspec-
tion, it is apparent that there has been great progress in dealing with them
in the past and that this process is expanding as more mathematicians
address biologically motivated problems. Historically, some new math-
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ematics simply emerged from the inner workings of the human brain,
without the direct influence of external reality. However, many of the fin-
est moments of pure and applied mathematics have arisen in response to
humankind’s quest to understand the physical world. The committee be-
lieves that the 21st century’s intensifying quest to understand the living
world will provide an equally rich stimulus for future triumphs.
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1

The Nature of the Field

INTRODUCTION

Biology is in dramatic flux due to a surge of new sources of data,
access to high-performance computing, increasing reliance on quantita-
tive research methods, and an internally driven need to produce more
quantitative and predictive models of biological processes. The growing
infusion of mathematical tools and reasoning into biology may therefore
be expected to further transform the life sciences during the decades
ahead. This transformation will have profound effects on all areas of basic
and applied biology.

Nonetheless, we are not starting from scratch in applying the math-
ematical sciences to biology. To a greater extent than is widely recog-
nized—by biologists and nonbiologists alike—there has been a string of
dramatic successes over more than a century that have been critical to
advances in biology and have also led to new mathematics. The role that
biological problems played in motivating the development of modern sta-
tistics is just one example that will be described in Chapter 2, “Historical
Successes.”

THE MATHEMATICS-BIOLOGY INTERFACE

The interface between mathematics and biology can be examined
across scales of biological problems and across all the major areas of math-
ematical sciences. Biological scales range from molecules, cells, organisms,

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


THE NATURE OF THE FIELD 13

and populations to communities.1  Much of the remainder of this report is
organized around these biological scales, articulating examples of the bio-
logical problems to be addressed at each scale. These scales may be briefly
described as follows:

• Molecules. Molecular biology focuses on the chemical components
of life and their interactions. These components differ greatly in size and
complexity, ranging from atoms and simple ions, through the basic mo-
lecular building blocks of life such as nucleic and amino acids, sugars,
and fats, to polymers and homogeneous and heterogeneous aggregates
of the more basic units, forming macromolecular assemblies and super-
molecular structures that carry out many of the fundamental processes
in the life of a cell. The structures of these objects, as well as the dynamics
of molecules and interactions between them, are central to biological
function.

• Cells. Cell biology is concerned with the self-replicating units of
life, including bacteria, plant, and animal cells, as well as the viruses and
other parasites that infect them. The study of the cell also includes consid-
eration of many interconnected units or subcellular structures, such as
organelles, which range in complexity from peroxisomes, proteosomes,
or lysosomes, to mitochondria and chloroplasts, up to the nucleolus and
the nucleus itself for eukaryotic organisms, and other structural compo-
nents intrinsic to cell function such as the endoplasmic reticulum. The
mechanisms and consequences of cell–cell communication are also of pri-
mary interest.

• Organisms. Organismal biology includes both the properties of
whole organisms and the complex multicellular structures of which they
are composed—the tissues, organs, organ systems, and integrative pro-
cesses that create a robust whole out of diverse parts. Organisms sustain
health and well-being in the face of considerable insults and environmen-
tal disturbances, a process known as homeostasis. Another feature at this
scale is the study of the breakdown of this robustness—in other words,
the etiology and nature of disease.

1Dividing life into levels, or scales, is obvious, is essential for understanding, and reflects
an intrinsic feature of biology. Nonetheless, the levels interact, and some of the division is
for human convenience or is an artifact of scholarly history. Characterizing any one level
requires at least considering its immediately adjacent levels; one could also provide a finer
subdivision of some of the scales, but for clarity, the committee used the most commonly
employed and obvious distinctions, ones that are important for how biologists think about
the object of their study and that provide a means for mathematicians to think about how to
engage biology.
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• Populations. Population biology concerns groups of organisms of
the same species. Genetic variation among individuals is of primary inter-
est, as is the behavior of populations over time in real environments—for
example, speciation, population fluctuation, and extinction.

• Communities and ecosystems. Community ecology is the study of as-
semblages of populations of different species and their interactions. Inter-
actions between living and nonliving components, nutrient and carbon
fluxes, and overall responses of ecosystems to changes in the physical
environment are central issues of ecosystem ecology. The ecology of in-
fectious disease is an example of an interspecies interaction of consider-
able recent interest.

Across all these levels of biological organizations, modeling of bio-
logical processes plays a central role. Much of this report describes the
types of models—and the associated mathematical techniques—that have
been productive in biology. In considering this diverse landscape, it is
important to understand that the word “model” has many meanings in
biology. Concepts in biology are often illustrated by simple verbal or vi-
sual models that are entirely qualitative. For example, most models of
gene-regulatory circuits are of this nature: They specify, in simple draw-
ings, which components of a pathway inhibit, and which stimulate, either
their own synthesis or that of other components. Other models may be
formulated mathematically even though they are primarily intended for
heuristic use rather than for data analysis: Simple differential equations
describing idealized predator-prey interactions are in this category. Fi-
nally, sophisticated models designed to capture subtle features of large,
real data sets are also diverse. Some are sets of partial differential equa-
tions that would look familiar to a classical physicist. Others are designed
to capture subtle statistical properties of data sets without reference to
operative biological mechanisms. Many are stochastic models that guide
sampling from combinatorially explosive sets of possible relationships
between biological objects: Examples include coalescent models of pos-
sible phylogenetic relationships between DNA sequences or between or-
ganisms defined by sets of discrete phenotypes. Hidden Markov models
of sites of transcription-factor binding in the regulatory regions of genes
are also in this category. Throughout the report, this diversity of models
should be kept firmly in mind. Of course, diversity in types of models is
found in all fields of science. Nonetheless, biology is perhaps unique in
the extent to which diversity in modeling practices is the rule, with the
existence of a small set of standard paradigms that are applicable to broad
sets of problems being the exception.
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WHAT HAS CHANGED IN RECENT YEARS?

While scientists have been studying biological systems at these vari-
ous scales for many years and applying varying levels and types of math-
ematics and statistics to them, recent achievements in biology and tech-
nology have combined to create a dramatically new world of opportunity
for the application of mathematics to biology. Rather suddenly, new ex-
perimental methods and technologies have allowed the generation of bio-
logical information at an astonishing rate. This phenomenon is playing
out at all scales of biological analysis:

• On the molecular scale, the human-genome sequence and the se-
quences of many other genomes have been determined; methods are also
available to measure the expression levels of all genes in an organism in a
single experiment. New techniques in protein chemistry, as well as new
radiation sources for structural analyses, are accelerating the rate at which
proteins can be detected in complex biological samples, purified, and char-
acterized structurally at atomic resolution.

• On the cellular scale, new methods of cellular imaging are making
it possible to track subcellular processes and to trace the propagation of
signals at millisecond timescales.

• For organisms, reductions in the cost of noninvasive imaging such
as computed tomography (CT) scanning, magnetic resonance imaging
(MRI), and positron emission tomography (PET) are making these meth-
ods available as routine experimental tools. New methods, such as high-
throughput patch-clamp studies, are providing electrophysiology data at
previously unattainable rates.

• For populations, it is now possible to measure the genetic differ-
ences between organisms at hundreds of thousands of sites in a single,
inexpensive experiment.

• At the level of communities, new remote-sensing technologies are
making it possible to measure entire ecosystems across multiple observa-
tion channels at high resolution.

The data that guide biology are diverse, and their integration is chal-
lenging. Data sets span the entire range from genomic data to satellite
data. Data may be collected at one point in time or continuously, resulting
in a real-time data stream (Turner et al., 2004; Running et al., 2004). In
addition, there are some cases (e.g., the National Science Foundation
(NSF)-funded Long-term Ecological Research Sites or the Framingham
Heart Study) where data have been collected about biological entities over
long periods of time.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


16 MATHEMATICS AND 21ST CENTURY BIOLOGY

Biological data may contain large errors of unknown origin owing to
complex interactions that are either poorly understood or inherently due
to stochastic processes. Quantities may be inferred using proxy data—for
instance, seasonal or annual temperature in the past can be inferred from
tree rings. Model development and model parameterization must take
these sources of uncertainty—complex interactions and stochastic pro-
cesses—into account.

In the past, data were almost exclusively collected by individual re-
searchers or small groups of researchers, and they remained the property
of those who collected them. Now, data are increasingly collected by
larger groups of scientists and made publicly available. The Protein Data
Bank and the National Center for Ecological Analysis and Synthesis are
two examples of institutions established to promote the sharing of bio-
logical data. One impediment to synthetic analytical work that relies on
large data sets collected by different groups has been the lack of com-
monly accepted standards for collecting, archiving, and annotating data
and of agreement on what kinds of data should be collected. Nonetheless,
there are increasing efforts to come to some agreement. For instance, Eco-
logical Metadata Language (EML) is a way to standardize data annota-
tion that is increasingly embraced by the ecological community.

Some of the greatest computational challenges today come from data
collected at the two extreme ends of spatial scales: genomic data and sat-
ellite data. The explosive rate of genomic data generation is well known.
In the case of more global data, Palumbi and colleagues (2003), for ex-
ample, present a number of new data acquisition methods, including re-
mote sensing to measure characteristics of the ocean (temperature, wind,
surface elevation) or trace changes in ocean currents and DNA sequenc-
ing to assess spatial and temporal trends in genetic diversity. New com-
putational methods need to be developed to extract useful informa-
tion from these vast amounts of data.

The analysis of spatial data poses particular challenges due to the cor-
relations that are inherent in spatial processes and due to local interac-
tions and stochastic effects. As an example, a method widely used for
detecting anomalies in space is the spatial-scan statistic. This statistic has
been applied to the detection of disease outbreaks or invasive species (Patil
and Taillie, 2003). One challenge is to couple on-the-ground observations
and remotely sensed data. Visualization tools are indispensable when
analyzing spatial data.

In parallel with the accelerating rate of data acquisition, there has been
an increase in the computational power available to the scientific commu-
nity—on the desktop, in a research unit, or through the Internet, from a
national resource or a grid of independent systems. Before computers
were widely available, discoveries were made by combining data from
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experiments or observational studies and their statistical analysis with
simple models that served as the conceptual framework. When comput-
ing power became available, this paradigm was extended to include com-
putation. This process started in areas of biology that are closely aligned
with the physical sciences (e.g., protein structure determination) and
gradually spread throughout biology. Concomitantly, biologists became
increasingly dependent on sophisticated data-analysis tools and complex,
data-driven models.

When analytical models are improved to the point of being good rep-
resentations of a biological system, they are often analytically intractable,
and biologists must turn to computation. In many cases, such models are
systems of differential equations, which are fairly amenable to solution on
computers thanks to mathematical advances of the past few decades. The
numerical analysis community continues to increase the set of partial dif-
ferential equations for which reliable, fast solvers exist. Robust techniques
are now available for solving problems in electrostatics, diffusion, elastic-
ity, and fluid dynamics. However, the needs of biology are among the
most challenging. Particularly because it often calls for multiscale models,
which include both deterministic and stochastic elements, the solution of
sets of biologically motivated equations frequently exceeds current capa-
bilities. There are not yet adequate capabilities for evaluating the range of
uncertainties embedded in a computational model due to its parameters,
discretization, and structure. Few tools are available to deal with these
issues when the models are applied to large systems. Mathematical meth-
ods are also being used in new ways to inform experimental design. Tra-
ditionally, experimental design decisions, such as choosing the nature of
a perturbation, the response measurements, whether to or how to do gene
disruption, and the timing and scope of response measurement, have been
made by the experimental biologist with only minimal consideration of
the computational analysis that will be performed based on the resulting
data. This was perhaps unavoidable, as techniques for gene disruption
and high-throughput assays have until recently been the major limiting
factors. However, as experimental genomic science advances, options are
becoming increasingly available. In the future, experimental design con-
siderations must be tightly coupled to the mathematical representations
to be used to model the system and the computational and statistical meth-
ods to be used for model identification and parameter estimation.

For example, switches for transcription or protein modification have
recently become available (Shimizu-Sato, 2002; Zeidler et al., 2004), mak-
ing it feasible to implement oscillatory perturbations in a systematic man-
ner. A natural question arises: Does oscillatory perturbation have any ad-
vantage over traditional impulse or step perturbation? And if so, how do
we quantify the advantages? A related question is what mathematical and
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statistical techniques are useful for the analysis of the response to such
oscillatory signals. To answer these questions, we need to study how to
estimate the system parameters based on each type of perturbation and
how the estimation may be affected by intrinsic and measurement noise.
The mathematical techniques involved include Laplace transforms, opti-
mal time and frequency sampling, and estimation theory under ill-posed
conditions. Even for a stochastic network as simple as an autoregulatory
gene whose protein activities are modulated by an input signal, these
questions have not been studied until very recently (Lipan and Wong,
2005), and much more remains to be done. Although the benefits of oscil-
latory perturbations are widely appreciated for the analysis of physical
systems, this approach is rarely used in the study of cellular systems. Care-
ful mathematical and simulation studies may help to interest experimen-
tal investigators in evaluating the promise of novel perturbations of bio-
logical systems.

From the point of view of software, there are a number of open issues
that are common to many scientific disciplines. These issues include the
fact that codes are complex and difficult to support, especially on parallel
computers (Post and Kendall, 2004). Software architectures that allow
problem specification and access to all layers of code development would
constitute an important step forward. Message passing interface (MPI)-
based development platforms such as Portable, Extensible, Toolkit for
Scientific Computation (PETSc) can accelerate the rate of progress, and
efforts like DOE’s Scientific Discovery through Advanced Computing
(SciDAC) program are promising. An upcoming report from the National
Academies’ Computer Science and Telecommunications Board will dis-
cuss, in particular, the interface between biology and the computing
world.

Another issue is verification and validation. Verification is defined
as determining whether the calculations truly correspond to the equa-
tions that constitute the analytical model. There are well-defined tech-
niques for verification, but they are rarely used systematically. Valida-
tion is a broader concept that is generally understood to mean the
assessment of the model quality—that is, does the software correspond
to biological reality? A part of the validation process that is common in
the physical sciences but little used in biology is the conduct of experi-
ments designed specifically to test the computational model itself rather
than to study new phenomena. That is, we need to consider the output of
a computational model as a testable hypothesis and then design biologi-
cal experiments that try to disprove the hypothesis by collecting appro-
priate data or exploring whether qualitative features of the computer
output exist in real systems. In order for such approaches to contribute
significantly to progress in understanding biology, the experimental com-
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munity will need to be convinced of the value of such studies, which may
not directly address the experimentalists’ goals.

WHAT MAKES COMPUTATIONAL BIOLOGY PROBLEMS HARD?

While the challenges posed by rapidly increasing amounts of data cut
across all the sciences, those challenges posed by increased amounts of
data in biology are uniquely difficult. At all scales of analysis, biology
involves large numbers of types of objects, large numbers of objects of
each type, and complex interactions between objects. In addition, biologi-
cal objects can possess individuality, a history (e.g., of external stimuli,
environmental insults, or inheritance), and a contingent existence (e.g.,
the location of components or of neighbors can be significant.) Except for
relatively small contributions from phenomena such as bilateral body plan
(when and where relevant), schemes for simplification that arise from
symmetry are rarely possible at any scale in biology. The systems are ex-
traordinarily heterogeneous in space and time, yet stunningly robust in
the face of perturbation. Interactions across vastly different scales can have
dramatic effects on system behavior. Thus, a tremendous quantity of data
must be managed in creating useful biological models. Moreover, some of
those data are very difficult to obtain. These issues are described in more
detail below for the molecular scale; similar issues arise at the other scales
and across scales:

• Large number of types of objects and objects of each type. At the molecu-
lar scale, with minor exceptions, proteins are synthesized from only 20
different amino acids. These units combine to produce tens of thousands
of independently encoded proteins in humans, and there are many differ-
ent mechanisms that can lead to the creation of variants—sometimes as-
tonishing numbers of variants—of each of these independently encoded
proteins. Analogous phenomena occur with nucleic acids and the poly-
mers of sugars, fats, and other molecules.

• Complex interactions between objects. DNA and RNA interact in-
tramolecularly and with each other. DNA is the template for creating
RNA, and RNA is the template for proteins. RNA and protein combine to
form superstructures that themselves play central roles in the translation
of RNA into proteins. Proteins interact intramolecularly and with other
proteins, as well as with RNA, DNA, and a large variety of other mol-
ecules to act as enzymes, structural components, signals, receptors of sig-
nals, and inhibitors of signals.

• Robustness. The many types of molecules in biological systems com-
bine to form extraordinarily robust subcellular organelles, cells, tissues,
organs, organ systems, organisms, populations, and communities. Bio-
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logical interaction networks achieve this robustness through high levels
of redundancy, modularity, heterogeneity, and feedback. It is not uncom-
mon to find that genetic ablation of a normally critical signaling pathway
not only fails to kill a cell but causes only the most subtle changes in its
behavior. Other pathways can often provide similar functions even if they
do not normally do so when the primary pathway is present. Similarly,
feedback mechanisms make biological systems extraordinarily robust
against both internal and external perturbations. Genetic variation is a
particularly important example of an internal perturbation. Between the
two copies of the genome present in each human, there are millions of
sequence differences, many of which affect the regulation of genes and
the structures of the encoded proteins.

• Complex interactions across scales. All of this complexity is present at
each scale of organization and in the interactions between scales. For ex-
ample, it is infeasible to simulate organ-scale electrophysiology by mod-
eling the ion fluxes through every membrane channel in every cell. There
is, at the present time, no systematic way of bypassing this problem. Ex-
isting approaches tend to be hybrid methods, which overcome such bottle-
necks by using different models on different temporal or spatial scales
coupled with heuristic models to transfer information between them. Sta-
tistical methods are also used to integrate information obtained from fine-
scale calculations to estimate the net response of an organ, tissue, or neu-
ral network.

FACTORS COMMON TO SUCCESSFUL INTERACTIONS
BETWEEN THE MATHEMATICAL SCIENCES

AND THE BIOSCIENCES

As the committee examined the historical record and contemporary
experience in applying mathematics to biology, a few simple observations
that commonly underlie successful interactions came to the fore:

• The biological problem has always been primary. Successful appli-
cations of mathematics to biology are driven by a deep understanding of
the relevant biology. Until this understanding is in place, it is not possible
to state the problem with sufficient clarity and at a sufficient level of ab-
straction to allow a meaningful mathematical formulation. Successful ap-
plications always involve major simplifications of the actual system. How-
ever, these simplifications must preserve the system’s essential features.
This first observation gives rise to the following recommendation:

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should give preference to
proposals that indicate a clear understanding of the specific bio-
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logical objectives of the research and include a realistic plan for
how mathematicians and biologists will collaborate to achieve
them.

There are dual benefits of preferential support for proposals rich in
both biological understanding and clarity about the mechanisms by which
the collaboration will advance. Naturally, well-organized and well-posed
research aimed at important biological problems will pay off early on,
will help sustain further studies, and will open up new directions for fruit-
ful inquiry. In addition, establishing such preferential support minimizes
the risk of applying mathematics to poorly posed biological problems and
maximizes the potential impact of quantitative tools. Rigorous
prioritization will support a structural change in the biological sciences
that encourages the use of quantitative approaches of all categories. More
generally, success stories based on such considerations will be readily ex-
ported to other biological research problems and will serve to validate the
role of mathematicians in biology qua mathematicians rather than just as
technical contributors and to validate, for experimental biologists, the role
of mathematics itself in understanding biology.2

• As the committee discusses in more detail below, cultural and lin-
guistic barriers create a potentially large divide between mathematicians
and biologists. It is only after achieving a common language in which to
discuss a particular problem that mathematics can be applied effectively.
The common ground can lie anywhere along the spectrum from the lan-
guage of biology to that of mathematics, but it has to be found, and each
side has to move toward the other to do so. That said, it is important to
recognize that communication barriers that appear to be linguistic often
have deeper roots. Many of the difficulties that researchers trained in the
physical sciences, engineering, and mathematics have in communicating
with biologists relate to fundamental differences between biology and the
physical sciences. Basic laws typically do not exist, and even basic prin-
ciples are often still undiscovered. Once they understand that progress is
possible despite these obstacles, some nonbiologists thrive in this strange,
new scientific environment. Others find that their skills are best applied
in better-defined settings.

• Initial progress has almost always depended on existing math-
ematical tools, often quite elementary ones. The complexity, particularly
at early stages of analysis, is in the biology, not the mathematics. Any
improvements to mathematical tools come later.

2 Of course this gap does not exist if one individual is well grounded in both fields. How-
ever, it is more common, and generally more practical, to collaborate rather than to learn
two disparate fields.
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• Formulation of the problem has been as important as solving it. As
they are first formulated, biological problems are typically ill posed or
incompletely posed. The process for translating them into formal state-
ments in the language of mathematics introduces a rigor that often uncov-
ers questions that might not otherwise have been asked. The translation
process causes both bioscientists and mathematicians to think carefully
about all of the parts of the system and to decide systematically which
variables, effects, and interactions to take into account. This process is
also a critical test of whether the biologists and mathematicians working
together on a problem have actually arrived at a common language.

• Even though many biological problems have been solved using
simple mathematics, a sophisticated and experienced mathematical scien-
tist has often been required to find the solution. This paradox arises be-
cause of the difficulty of abstracting the problem from its biological messi-
ness and sifting through the enormous collection of tools and methods
already potentially available for addressing it. In addition, the solution
often involves applying familiar mathematical methods in unfamiliar
ways or contexts.

There have been cases where mathematical techniques were applied
to biological problems with inadequate appreciation for the finer points
of the biology, leading some to overstate the significance of their math-
ematical results. The result was statements such as that of Mayr (1982, p.
304), who when explaining the role mathematics played in evolving the
thinking of the ancient Greeks, wrote “This was the first of countless epi-
sodes in the history of biology where mathematics or the physical sci-
ences exerted a harmful influence on the development of biology.” This
notion has held back the full introduction and exploitation of the power
of mathematics in the study of biology. At the same time, a healthy skep-
ticism is necessary for making progress in the sciences, and too-universal
acceptance of approaches can impede progress as much as outright rejec-
tion. A balance of different approaches often yields the greatest gains, as
eloquently expressed by Naeem (2002) in the context of ecology: “. . . eco-
logical truth lies in the confluence of observation, theory, and experiment.
It is through discourse among empiricists and theorists that findings and
theory are sorted and matched and where there is a lack of correspon-
dence, new challenges identified.”

PREPARING THE GROUND FOR IMPROVED SYNERGIES OF
BENEFIT TO BOTH FIELDS

Progress in the life sciences will increasingly depend on deep and
broad integration of mathematical analysis into the study of all levels of
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biological organization. No one level of organization stands out as offer-
ing singularly attractive opportunities for mathematical applications. The
challenges faced at different levels have distinctive characteristics, but
there are also unifying themes.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should be receptive to re-
search proposals that pertain to any level of biological organi-
zation: molecules, cells, organisms, populations, and ecosys-
tems. While much current research can be productively confined
to a particular level, there are also substantial challenges and
rewards associated with analyzing interactions between levels.

The empirical factors for success listed in the previous section all point
to one critical element: A true collaboration that brings together skills from
the mathematical sciences and a deep knowledge of biology must be es-
tablished. In response to this basic need, funding programs, research in-
stitutions, and groups can experiment with conditions to facilitate such
an establishment. Some of the factors to be addressed include these:

• Communication. It is clear from the above that mathematical scien-
tists and biologists have to find a common language so that all of the
essential richness of a biological problem can be captured and formulated
in mathematical terms. This can and should happen in both directions,
with some biologists developing a deeper and more sophisticated under-
standing of quantitative methods and many mathematical scientists ex-
panding their understanding of biology to appreciate the scope of the
problems to be addressed. (The primary model in the mind of the com-
mittee is mathematical scientists contributing to biology research teams,
not, for the most part, biologists learning all the necessary mathematics
and statistics.) Interestingly, some of the most successful practitioners at
the interface have come out of the physical and mathematical sciences,
bringing a deep understanding of quantitative methods as well as biol-
ogy, but neither to the exclusion of the other.

• Timescales. The professional timescales of the fields are often mis-
matched, and both sides of the collaboration need to develop an apprecia-
tion for this reality. On the one hand, if a biological challenge demands
the development of deep new mathematics or statistics, this process will
typically require a detour of months or years, time that is not consistent
with the competitive nature of researchers in the biological sciences and
the expectations of them. On the other hand, existing mathematical meth-
ods might require the generation of additional data (e.g., to enable good
bounds on parameters or uncertainties), which might be time consuming
and initially unrewarding to biologists.
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• Recognition and advancement. If mathematical scientists are to in-
vest time and effort in learning biology and to contribute what, from a
mathematical perspective, may be relatively simple methods, then the
mathematical sciences must adjust their reward systems. This difficulty
is an age-old problem in academic departments: It flares up as practitio-
ners in a field venture out to the interface with another field and devote
more intellectual energy to transitioning research results than to directly
advancing their own field’s research agenda. Of course, university de-
partments will not adjust something as fundamental as their own inter-
nal reward system in the absence of external stimuli and external re-
wards. While simply putting forward funds for collaborations at the
interface will provide some incentive, the funding agencies need to con-
sider special honorific awards and special programs, and possibly other
mechanisms, to encourage the needed changes in systems for recognition
and advancement. Adjustments would also help with the differences in
timescales between the expectations and realities of doing biology and
doing mathematics, and agencies could consider mechanisms to satisfy
both timescales. Provision of more funding at the interface, as planned, is
the first step.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should place increased em-
phasis on funding mechanisms and novel approaches to the
organization of interdisciplinary research. The goal should be
to foster effective collaboration between mathematical scientists
and bioscientists by working to eliminate barriers posed by in-
adequate communication, disparate timescales for achieving
research objectives, inequitable recognition of contributors to
interdisciplinary projects, and cultural divisions within univer-
sities, research institutes, and national laboratories.

In spite of the committee’s belief that most problems in biology can
initially be addressed with fairly standard mathematics or statistics, there
are occasions where exceptionally innovative researchers may be driven
by the particularities of a problem to break out of traditional mathematics
paradigms and develop truly novel methods. R.A. Fisher’s work on the
analysis of variance is a dramatic example addressed in Chapter 2, “His-
torical Successes.”

There are also many examples where interesting mathematical prob-
lems were abstracted away from the biological problems that motivated
them, leading to mathematical sciences research that is valuable in its own
right. Examples of this type are particularly common in combinatorics,
algorithmics, and computational complexity theory. A typical example is
the “adjacent ones” problem, which first arose in the 1950s in the context

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


THE NATURE OF THE FIELD 25

of fine-structure genetic mapping. Once posed, it continued to interest
mathematicians—and occasionally found new biological applications, in-
cluding in the Human Genome Project—for 40 years (Benzer, 1959;
Alizadeh et al., 1995). The committee’s sense is that the flow of research
problems from biology back into mathematics is likely to become increas-
ingly common as research expands at the interface of the two fields.

It is important that more biologists recognize the value of true col-
laboration with mathematical scientists. There is a common presumption
that mathematical sciences research can be done in a vacuum—that is,
that mathematical scientists tend to learn about a problem, retreat to their
offices for several months, and reappear only when they have completed
their research. This model is not at all true in applied areas, but many
biologists have not been engaged in the iterative give-and-take that melds
the complementary skills of mathematical and biological scientists to cre-
ate an advance that neither could have achieved alone. Similarly, many
biologists have not seen the powerful difference between using off-the-
shelf formulas or software and using a method that is adapted by an expe-
rienced mathematical scientist for a particular application.

The charge to the committee asked for recommendations on how the
DOE’s applied mathematics program can best support its computational
biology aims. One thrust for that program should be the refinement of
general-purpose tools whose broad biological utility has already been es-
tablished. Some knowledge of biological applications is often important
for pointing this research in optimally useful directions, but intimate fa-
miliarity with specific biological problems may be unnecessary. A good
example of this dynamic involves applications of Markov chain Monte
Carlo (MCMC) methods in biology. These applications are now suffi-
ciently well established that classes of mathematical problems, such as
those governing the convergence properties of Markov chains, can be
identified whose solution would almost surely prove relevant to a wide
array of biological problems.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should support the refine-
ment of general-purpose tools whose broad biological utility
has already been established. Such research might require spe-
cialized review criteria, particularly when the focus is on tool
enhancement rather than breakthrough research.

The committee believes that most advances in the near future in com-
putational biology at all scales will come from adapting established math-
ematical tools to biological problems. Biology is complicated, and what is
needed is insight about which complications can be ignored and which
are essential; it is easier to reach that insight when dealing with well-char-
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acterized mathematical tools rather than novel ones that might add com-
plexity. These insights will guide the application of sophisticated, but of-
ten familiar, mathematical tools to extract as much information as pos-
sible from large data sets. In some happy instances, this process will
spawn new mathematics. However, no amount of mathematical sophisti-
cation can overcome the intrinsic complexity of biological systems. The
key will be to achieve steady improvements in our ability to simplify and
approximate these systems without losing their essential characteristics.
While this process of reduction will certainly require researchers with a
good sense of the power and limitations of relevant mathematical tools, it
will predominantly require an intimate knowledge of the living systems
that they are attempting to approximate. By working for the most part
with well-established mathematical tools, the mathematician and the bi-
ologist can focus on what data might be missing or what approaches might
not have been tried, in order to make the problem tractable. It should be
easier to ascertain which features of the complexity can be neglected or
ignored, which are essential, and which approaches can provide the best
input for mathematical analysis.

The range of mathematical sciences methods that have successfully
contributed to biology is very large, as indicated in the rest of this report.
Therefore, recommending that the DOE applied mathematics program
cover those demonstrated areas of mathematics is not a restriction; in fact,
it would require a substantial enlargement of that program’s traditional
scope. Some of the most promising areas are discussed in the chapter
“Crosscutting Themes,” but these should be seen as illustrative, not ex-
clusive. As biology itself proceeds, the range of applicable mathematical
methods might well expand. Openness, or inclusiveness, will be impor-
tant to ensure that the methods of mathematics can contribute most effec-
tively to biology.

The federal agencies have set up processes recently to be more re-
sponsive to tool development, to the more general aspects of infrastruc-
ture support, to the provision of new methods, and to the development of
new instruments, new approaches, or software, along with the more tra-
ditional forms of infrastructure such as equipment. The agencies have also
provided some funding to support what is called discovery science: data
mining or exploratory work aimed at gaining a novel insight rather than
testing a specific hypothesis. Interdisciplinary research, in general, often
requires review processes carefully constructed to permit effective evalu-
ation of novel approaches. More specifically, the plans for generalized
tool development will need similar careful review and a mandate pro-
vided through the call for proposals.

Recommendation: Funding agencies supporting mathematical
research related to the life sciences should give priority to re-
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search that addresses intrinsic characteristics of biological sys-
tems that reappear at many levels of biological organization:
high dimensionality, heterogeneity, robustness, and the exist-
ence of multiple spatial and temporal scales.

The committee attempted to identify subdisciplines of mathematics
in which broadly based advances would be particularly likely to enhance
biological research. However, it concluded that since critical advances had
come from nearly every subdiscipline within the mathematical sciences,
any such prognostication would be mere guesswork. The committee be-
lieves that excellent biology research can be achieved only by answering
key questions within that discipline. Specifying a priori the tools to be
developed inverts that goal. However, it is clear that if DOE’s applied
mathematics program is to contribute to computational biology, it should
focus on research that is linked to the intrinsic characteristics of biological
systems that reappear at many levels of biological organization: high di-
mensionality, heterogeneity, robustness, and the existence of multiple spa-
tial and temporal scales. All areas of biology will benefit from improved
mathematical representations of biological systems.

STRUCTURE OF THIS REPORT

Future biologists will use an enormous variety of mathematical tools.
What will be distinctive about their research are the problems they aspire
to solve rather than the tools they use to solve them. For this reason, this
report is organized primarily around biological, rather than mathemati-
cal, themes. Its survey of mathematical challenges in biology, which
ranges from molecular to ecological levels of organization, is necessarily
cursory. However, the report provides an introduction to the diverse chal-
lenges that characterize contemporary applications of mathematics to bi-
ology. The daunting task facing policy makers will be to develop mecha-
nisms that encourage the deep integration of mathematics and biology
needed for sustained progress across this vast, exciting, and rapidly evolv-
ing scientific frontier.
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2

Historical Successes

To set the stage for recommendations dealing with tomorrow’s pro-
ductive interaction between the mathematical sciences and biology, this
chapter briefly describes some successful interactions of the past. While it
is common to hear that biology is only now becoming mathematical, in
fact there has been overlap between the two fields for a long time (Cohen,
2004). What is different now is that biology routinely relies on methods
from the mathematical sciences to assay and manipulate data and that
computational methods have now become powerful enough to model the
complexity of biological entities and systems.

THE BEGINNINGS OF POPULATION BIOLOGY

R.A. Fisher, a mathematician trained at Cambridge University, be-
came interested in biology at a crucial time. At the beginning of the 20th
century, biologists had rediscovered Mendel’s work, and one of their main
challenges was to reconcile it with Darwin’s theory of evolution. Fisher is
one of the scientists credited with ushering in the new era that merged
genetics and evolution, sometimes referred to as neo-Darwinian theory,
through his work that helped establish the field of population biology. He
published several papers on the topic, and his 1930 book The Genetical
Theory of Natural Selection stands as a landmark of that era. His work dem-
onstrated that statistics is a natural tool for modeling populations.

It is equally interesting to consider how biological data led Fisher to
revolutionize the field of statistics. He joined the Rothamsted Experimen-
tal Station to apply statistical methods to the mass of data that had been
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accumulated over many years on field trials of crops. He found that the
tools available were inadequate to the task. One review of his work (Yates
and Mather, 1963) describes his contribution:

While at Rothamsted not only did he recast the whole theoretical basis of
mathematical statistics, he also developed the modern techniques of the
design and analysis of experiments, and was prolific in devising meth-
ods to deal with the many and varied problems with which he was con-
fronted by research workers at Rothamsted and elsewhere.

His 1925 book Statistical Methods for Research Workers, which intro-
duced analysis of variance (ANOVA) methods to statistics, was a revolu-
tionary advance. “Fisher had by that time also established a rigorous
framework for maximum-likelihood methods, which continue to play a
central role in statistical inference,” according to Aldrich (1997). In 1935
Fisher published The Design of Experiments, which was the first book de-
voted to that subject. Fisher had a significant impact on both biology and
mathematical statistics, and his contributions affected the theory and prac-
tice of both.

INFERENCE OF GENE FUNCTION BY HOMOLOGY

In the modern world of biology, where sequences of entire genomes
are available and the number of such sequences is growing rapidly, one
sees the enormous importance of mathematical and computer science
methods in advancing biological knowledge. Algorithms are essential at
many stages, from finding overlaps of short, noisy sequence strings, to
assembling them into complete chromosomes, and to identifying regions
that are likely to code for proteins or carry out other genetic functions.

One of the most important tasks is the inference of a protein’s func-
tion. There are close to 1 million different known and predicted proteins
in living organisms. Two proteins are said to be homologous if their simi-
larity is due to common ancestry—that is, if they were generated from the
same gene in the genome of an ancestral species at one time in the evolu-
tionary past and their sequences have been sufficiently conserved since
that time so that they are still recognizably similar. The number of pro-
teins that have had their functions determined experimentally is, at most,
in the tens of thousands, meaning that the functions of over 90 percent of
all the proteins in our databases are inferred from homology. In some
cases this is easy to do. For example, if one protein has its function deter-
mined experimentally and another protein is discovered with a nearly
identical sequence, then it is an easy, and quite reliable, extrapolation to
assign the same function to the new protein. But, if the sequences of two
proteins differ substantially, it is less clear whether they are really ho-
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mologous to each other. If they are homologous, they are likely to have
the same, or a closely related, function, although there are exceptions.
Inferring that two proteins are homologous when they are far from iden-
tical in amino acid sequence and locating their related sequences in a com-
plete genomic sequence requires the application of mathematical and com-
putational methods that have been developed over the last 40 years.

In the 1960s, Emile Zuckerkandl and Linus Pauling (1965) first real-
ized that DNA and protein sequences, molecules they called “semantides”
(for information-carrying polymers) contain the history of their diver-
gence from their ancestors. From the information in genetic sequences,
one could, they argued, do “paleogenetics” to find the relationships be-
tween genes and therefore also between species. This became the field of
molecular evolution, which has flourished and become ever more math-
ematical as the sophistication of the models for evolutionary change has
increased and more complex algorithms have become common for infer-
ring evolutionary events and phylogenetic trees. Also in the 1960s, Motoo
Kimura (1968) introduced the theory of neutral evolution and its large
contribution to sequence divergence. One effect of his work was simply to
emphasize the enormous amount of change that can be observed in bio-
logical sequences, which makes paleogenetics that much more challeng-
ing, because it means large differences in sequence can accumulate with-
out changes in function. Margaret Dayhoff (1965) produced the First Atlas
of Protein Sequence and Structure. Among other things, the atlas allowed
her to analyze the substitutions observed in closely related proteins and
obtain an empirically derived estimate for the rate of substitution of one
amino acid for any other. The resulting percentage accepted mutations
(PAM) matrices were a much improved measure of the similarity between
protein sequences.

To identify the changes between two proteins, one has to find the
correct, or at least an optimal, alignment between them. If they are very
different, it is not easy to obtain the optimal alignment. Methods referred
to generally as dynamic programming, developed by Richard Bellman in
1953, can obtain optimal alignments in such cases very efficiently.
Needleman and Wunsch (1970) first published a dynamic programming
algorithm to find the optimum alignment between two biological se-
quences, and over the next several years several variations of that method
were developed, differing in how the alignments were scored and how
they treated gaps. Most of the efforts were directed at global alignments,
where both sequences are aligned along their entire lengths. The more
challenging problem was to find local alignments, where only a portion
of the two sequences has significant similarity. Local alignment is needed
to compare genomes with each other, or even to ask whether a homo-
logue of a particular gene occurs within a genome sequence. Smith and
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Waterman (1981) solved the problem of identifying the local alignment
using dynamic programming in a way that allows for full use of similar-
ity matrices such as PAM, treats gaps in an intelligent way, and is guar-
anteed to find the optimal solution efficiently.

While the Smith-Waterman algorithm solves the problem of optimal
local alignments, it is not efficient enough for the very large database
searches that were becoming necessary by the mid- to late 1980s owing to
an exponential increase in database size. The BLAST program, published
in 1990, was a major breakthrough (Altschul et al., 1990). This was an
important collaboration between two computer scientists (Myers and
Miller), a mathematician (Altschul), a medical doctor (Lipman), and a bi-
ologist (Gish). It employed a fast heuristic search algorithm for the local
alignment problem, and the algorithm’s sensitivities are not much reduced
from those of the Smith-Waterman algorithm. At the same time, Altschul
and Karlin, another mathematician, developed statistical methods to al-
low computing the significance of the matches found by BLAST (Karlin
and Altschul, 1990). When the National Institutes of Health (NIH) made
the program available over the newly arrived Internet, biologists around
the world suddenly had access to sophisticated database searches to com-
pare their own sequences with the known sequences. Just as the large-
scale genome sequencing projects were being contemplated, but before
they had truly begun in earnest, this critical piece of software had been
developed that would greatly expedite the projects.

EVOLUTIONARY PROCESSES IN POPULATIONS

In the early 1980s population genetics theory took a dramatic turn.
Before that time, most theoretical work was focused on the analysis of
allele frequencies for two, or perhaps a few, variants in just one or two
genes. Interest focused on the frequency spectrum or heterozygosity that
one observed at enzyme loci, using protein gel electrophoresis to assay
variation. The theory was based primarily on diffusion approximations of
two-allele systems (higher-dimensional systems being intractable). When
it became clear that surveys of DNA polymorphism would become avail-
able via resequencing, it was obvious that some different quantities would
need to be studied. With this new kind of data, one would know not only
the number of alleles and their frequencies in a sample but also, from long
stretches of linked sites, the number of mutational steps by which all the
sequences differed from each other. This opened a new window on the
evolutionary processes occurring in populations.

To understand the variation revealed by sequencing of alleles, several
investigators at that time began focusing on the distributional properties
of gene trees. Gene trees, under the standard finite-population-size mod-
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els, are random structures. The early work, spearheaded by Kingman
(1982) and Tajima (1983), showed that many properties of sequence varia-
tion could be simply understood in terms of the properties of the genea-
logical tree relating the sampled sequences. Many other players quickly
entered the arena. This area of population genetics became known as coa-
lescent theory. The early theory dealt with the simplest models, which
had constant population size, no spatial structure, no recombination, and
no selection. Over the next 15 years the theory was generalized to cover
models in which all of these limitations had been removed. It is now rou-
tine to think about genetic variation in terms of the size and shape of gene
trees that relate sampled sequences. It is also routine to simulate samples
under many models using efficient algorithms based on the coalescent
approach. The models of the coalescent process are often very simple to
describe, consisting of relatively straightforward Markov chains, but the
genealogical structures that arise are in some cases surprisingly challeng-
ing to analyze and rich in their connections with other areas of stochastic
processes. For example, coalescent methods for models with selection
have connections with the theory of interacting particles and dual pro-
cesses (Krone and Neuhauser, 1997).

The coalescent approach has led to new insights about the models, to
new analytic results (Krone and Neuhauser, 1997), to numerical methods
for obtaining likelihoods (Kuhner et al., 2000; Griffiths and Tavaré, 1995),
and to very efficient simulation algorithms (Hudson, 1983).

MODELING

As a further illustration of successful interactions between mathemat-
ics and biology, consider two separate historical examples of mathemati-
cal modeling. The development of the Hodgkin-Huxley equations
(Hodgkin and Huxley, 1952) to describe the evolution of action potentials
was of profound importance. Their description of ionic currents through
ion selective channels provided a paradigm that is still used extensively
today in models of cellular electrophysiology. The understanding of ex-
citability that came from their model is also of remarkably general appli-
cability. Perhaps more significant, however, was the recognition that spa-
tially extended systems of excitable components could support waves of
invariant form and allow for robust signaling over great distances.

It is now understood that this combination of excitability over spa-
tially extended networks provides the basis for communication and con-
trol of many fundamental biological processes. Communication along
one-dimensional excitable pathways is remarkably robust and reliable.
Yet, in two- and three-dimensional spatially extended networks, other
robust patterns (e.g., re-entrant spirals) can arise that overrun the normal
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function and lead to serious pathology. As a consequence, there is cur-
rently a significant effort to understand how to prevent these other natu-
rally occurring, but pathological, patterns and how to get rid of them when
they do occur.

A second illustrative example of modeling success is the suggestion
of the existence of dendro-dendritic synapses in the olfactory bulb by Rall
and Shepherd (1968). It was widely believed, before that time, that axons
were excitable, dendrites were passive, and synaptic connections were
made between axons and dendrites only. In order to match certain extra-
cellular potentials that were measured experimentally in the olfactory
bulb, Rall and Shepherd found that a compartment model with active
dendrites was required. As a result, they suggested that dendro-dendritic
pathways were likely to exist, and that they provided a novel mechanism
for recurrent inhibition. It was only years later that experimental tech-
nique improved to the point where such synapses were indeed found to
exist. This is an example of the healthy interplay between modeling and
experiment, wherein each drives the other in the pursuit of more com-
plete understanding.

MEDICAL AND BIOLOGICAL IMAGING

The last few decades have seen dramatic advances in imaging tech-
nology. In medicine, magnetic resonance imaging (MRI) and computed
x-ray tomography (CT) are playing increasingly important roles in both
diagnosis and treatment, with new applications emerging every year. The
importance of the mathematical sciences to biomedical imaging was em-
phasized in the 1996 National Research Council report Mathematics and
Physics of Emerging Biomedical Imaging:

While exponential improvements in computing power have contributed
to the development of today’s biomedical imaging capabilities, comput-
ing power alone does not account for the dramatic expansion of the field,
nor will future improvements in computer hardware be a sufficient
springboard to enable the development of the biomedical imaging tools
described in this report. That development will require continued re-
search in physics and the mathematical sciences, fields that have contrib-
uted greatly to biomedical imaging and will continue to do so. (p. 9)

For example, the mathematical foundations for image reconstruction
in x-ray CT date back to the work of Johann Radon in the early 1900s. It
was around 1970, however, that machines first provided images of value
in medical diagnosis, mainly owing to the efforts of A.M. Cormack and
G.N. Hounsfield. They observed that by measuring the net attenuation
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along large numbers of individual x-ray pencil beams, one could recon-
struct the attenuation coefficient point by point across a complete cross
section of the human body. Nevertheless, several hours of computation
time were required to obtain a single image, and the quality was rela-
tively poor. The original numerical methods for reconstruction were based
on iterative relaxation of a system of equations, with each equation repre-
senting the discretization of an integral measuring the net attenuation
along a single line. When Shepp and Logan (1974) and others introduced
filtered back projection, it was possible to substantially improve both im-
age quality and reconstruction time, and CT scans became much more
practical.

For the purposes of this chapter, it is worth highlighting a very spe-
cific mathematical contribution and discussing its ramifications in the
context of computational biology more broadly. That contribution was
the introduction of the mathematical “phantom” by Shepp and Logan
(1974) and Shepp and Kruskal (1978). Consider the situation where one is
seeking to compare the performance of a variety of reconstruction meth-
ods. The standard approach before Shepp and Logan’s work had been to
create actual physical models with known characteristics, from which
data were measured and reconstruction performed. This seems natural,
but errors may stem from inaccuracies in performing the physical experi-
ment as well as in the reconstruction. The Shepp-Logan phantom is a
mathematically defined function from which exact (artificial) data can be
created, including any desired noise model. Its importance was made
clear when Shepp and Logan turned their attention to a ring of high den-
sity slightly inside the skull that was observed when the first CT machine
was introduced and that was believed to be a previously unrecognized
anatomic feature. The use of mathematical phantoms was instrumental
in showing that this ring was in fact an artifact of the reconstruction
algorithm.

SUMMARY

This chapter gives some indication—but certainly not an exhaustive
account—of the long history of interaction between the mathematical and
biological sciences. It also demonstrates, by example, the breadth of that
interaction: Many areas of biology have been affected by many areas of
mathematical science, and the challenges of biology have also prompted
advances of importance to the mathematical sciences themselves. Some-
times the benefits of mathematical sciences research have been direct, and
sometimes they have arisen in ways that were not predicted. As these
examples show, the right mathematical approach can have a dramatic
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impact on whether or not a particular biological construct is feasible—for
example, in the case of finding protein homologues or reconstructing CT
scans—and developing the right mathematical representation of a phe-
nomenon can enable very productive research—for example, in the study
of populations or exploring signaling mechanisms.
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3

Understanding Molecules

INTRODUCTION

Cells are composed of molecules, and their properties are largely de-
termined by the chemical reactions the molecules perform and by the
structures the chemicals form. The molecules range from the small and
ubiquitous, such as water and various salts and metal ions, to the very
large molecules that are specific to living systems, such as the genetic
material of DNA. In between are a wide variety of organic molecules nec-
essary for life, including sugars and lipids, vitamins and other enzyme
cofactors, and the nucleic acid and amino acid monomers required for
DNA, RNA, and protein synthesis. The molecules interact in many ways
and are capable of recognizing one another; some are active in the form of
larger complexes. These dynamic interactions are the essence of the pro-
cesses in living cells. Cells in turn have mechanisms for accurately con-
trolling their composition, for obtaining from the environment molecules
they can use, and for synthesizing those that they need. They can modify
their composition depending on their environment and their fate. At ev-
ery cell division, they must essentially duplicate every component, except
that occasionally cells undergo asymmetric division so that the two
daughter cells can take on different roles.

For the last 50 years, the field of molecular biology has examined the
hereditary and information-carrying molecules of DNA, RNA, and pro-
teins. These molecules will be the focus of this chapter. Determining the
double-stranded structure of DNA made clear how genetic information is
replicated and passed from generation to generation. Since then, much
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effort has been devoted to constructing a flow chart for the various forms
of molecular information. One of the fruits of this labor has been a sense
that many of the main information highways are known—for example,
the central dogma that describes the irreversible flow of information from
DNA to RNA to proteins. The fact that reality is more complex and that
surprises continually emerge, such as the recent appreciation for the vari-
ety of roles played by RNA, shows that this enormously successful field
still has a long road ahead before it will be “solved” in any comprehen-
sive sense.

One of the most successful achievements of molecular biology has
been a nearly complete catalogue of underlying DNA codes for a diverse
set of information-bearing macromolecules: The genomes of humans and
many microbes, plants, and other animals are known with considerable
completeness and accuracy. There has thus emerged the feeling that bio-
logical explanation is no longer primarily to be sought in finding new
molecular actors but in understanding their individual functions and the
patterns of organization and interaction that collectively determine the
functions of the cell.

THE MATHEMATICS-BIOLOGY CONNECTION

Molecular biology has always relied heavily on mathematics. From
the analysis of sequences to techniques for determining the three-dimen-
sional structures of molecules to studies of the dynamics of entities rang-
ing from individual molecules up to entire networks, mathematical tech-
niques and computational algorithms are critical.

Because of the rapid advances in the technology for DNA sequenc-
ing, DNA sequences are now easily obtained, and protein sequences can
be inferred with reasonably high accuracy and completeness. Thus, we
now have an abundance of those sequences for analysis. DNA, RNA, and
proteins are all linear polymers, or strings, made from a small alphabet
of residues, 4 for DNA and RNA and 20 for proteins. The specific proper-
ties of any molecule, or the functions it serves, are determined by its se-
quence and its structure (in the appropriate context), though of course
the structure is a result of the sequence and the molecule’s environment.
One of the mathematical challenges of biology, then, is determining the
mapping from sequence space to function space. The set of linear se-
quences over a small alphabet leads quite naturally to the concept of se-
quence space and the universe of all possible sequences. The concept of
function space is a little harder to imagine, but certainly we could catego-
rize all of the functions we know and consider them to be a partial set of
all possible functions.

For proteins, and for some RNAs, function is critically dependent on
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structure, and knowledge of structure can provide information about
function. Hence, the mapping from sequence space to structure space is
part of the challenge, and may be part of the solution, of creating a map
from sequence space to function space. The structure of a protein pro-
vides strong clues about its biochemical function—for example, the
mechanism for action by an enzyme—but at the moment, there have been
only a few successes in predicting biological function from sequence. The
structures of these macromolecules are also important for other research
purposes—for example, they are the starting point for predicting bio-
chemical action or for modeling the dynamics of the macromolecules, for
suggesting ways to inhibit the action of undesired proteins, for predict-
ing potential chemical inhibitors or activators of a given protein, or for
altering a protein’s functionality through its environment or through
reengineering its sequence and, consequently, its structure. Therefore,
developing the ability to map from sequence space to structure space is a
critical challenge that, if met, would have a significant impact on all bio-
logical sciences and on our understanding of life. Currently, inferences
about structure and function rely on the simple assumption that se-
quences that are “close” in sequence space (using metrics determined
from studies of evolution) are likely to map to nearby points in structure
and function space. That is generally true, but there are complications.
Short stretches of a protein can be exceptions to this general situation,
and larger proteins are composites of folded segments or domains. In the
absence of experimental determination through an x-ray crystallographic
structure determination, we do not know in any detail how to ascertain
where the boundaries are for domains. We also do not know which se-
quence differences are most critical or might be most indicative of excep-
tions or might most effectively predict the biological function.

Even a catalog of all the components of a cell (a complete “parts list”)
detailing not only their sequences but also their structure and function
would not really explain the properties of that cell, because the system is
far from equilibrium and in a very dynamic state. The properties of mol-
ecules often depend on their dynamics, from the catalytic activities of en-
zymes to the assembly of multicomponent structures, and many of a cell’s
molecules need to be transported to specific locations within or outside
the cell in order to perform their functions. Cells sense their environment
and respond to various stimuli by sending signals throughout the cell and
to neighboring cells, modifying their behavior. Metabolic networks are
subject to feedback regulation and other kinds of control, and the expres-
sion of specific genes is controlled by networks of regulatory factors and
their interactions with each other and with cellular signals. Because many
cellular processes are due to the actions of a small number of molecules,
stochastic fluctuations cannot be ignored. In general, then, understanding
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the properties of cells depends on modeling the dynamics of the indi-
vidual molecules and their interactions. The dynamics has both spatial
and temporal components and is largely nonlinear and discrete. Math-
ematical analysis of dynamical systems has been essential for our current
understanding, but the field appears to be on the verge of a major expan-
sion. New technologies offer the opportunity to greatly increase what we
can measure about cellular components. Using those data to inform dy-
namical models of the cell is critical to advancing our understanding of
biology and is likely to tax existing mathematical techniques, opening up
new areas of mathematical and biological research.

AREAS OF MATHEMATICAL APPLICATIONS FOR MOLECULES

Sequence Analysis

The central role of sequences in mathematics is unquestioned. The
discovery that DNA, RNA, and proteins are all composed of linear se-
quences provided a strong link between active areas of research in both
molecular biology and the mathematical sciences. A well-developed set
of results for sequence analysis has been developed in computer science,
some of which are useful for biological problems (Gusfield, 1997;
Waterman, 1995). The most classical problem of string searches is to find
exact occurrences of a sequence (usually short, which we will call the “pat-
tern”) in another sequence (usually long, called the “text”). The Boyer-
Moore and Knuth-Morris-Pratt algorithms are a sophisticated pair of al-
gorithms that have been developed to alleviate this problem (Pevzner,
2000). These techniques make it possible to find exact matches to the pat-
tern in linear time (time that is proportional to the sum of pattern and text
lengths) or better; the obvious naive method takes quadratic time (time
proportional to the product of pattern and text lengths). Suffix trees also
accomplish this task and, more importantly, are also useful for more gen-
eral problems (Gusfield, 1997). Certain biological problems involve exact
patterns, an important example being restriction sites (usually four to
eight base pairs in length), where certain enzymes cut DNA molecules.

However, it is usually the case that sequence problems in biology in-
volve approximate matching. Sites where a protein can bind to DNA, for
example, usually are very inexact, in the sense that there may be a few
distinct positions where certain bases are strongly preferred but no unique
binding site. Dynamic programming (DP) is a useful method for many
problems of approximate pattern matching (Waterman, 1995). Usually
taking quadratic time, various DP algorithms can find the approximate
location of patterns in texts, the best relationship between two and more
sequences (the alignment problem), and the best overlap between two
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sequences. These algorithms are indispensable for sequence assembly, the
process of inferring a genome sequence from an oversampled set of short,
randomly located sequences. One alignment problem is to find the best
relationship between the letters of two sequences, and another is to find
the best segments that match well. The latter problem, usually called local
alignment, is most often used in database searches, where one wants to
find domains of one sequence that are similar to domains of another se-
quence by common ancestry—that is, domains that are homologous. Be-
cause the databases of known sequences have become very large, DP is
too slow for the full searches. Various heuristic methods, such as BLAST
(Altschul et al., 1990), have been used for this problem and can be fairly
effective, but greater sensitivity at detecting distant homologies is needed.

Critical to the assessment of similarity between sequences is a model
for evolutionary processes. Before protein and DNA sequences, the infor-
mation used to classify an organism and infer its history was its observ-
able properties (e.g., wings or gills) as well as fossil evidence. But once it
was realized that DNA and protein sequences contain traces of their his-
tory, new avenues to studying evolution—paleogenetics—were opened
up (Zuckerkandl and Pauling, 1965). From alignments of clearly homolo-
gous sequences, it was possible to determine empirically the rates of resi-
due substitution. Those rates allow optimum alignments to be determined
over much larger evolutionary distances and inferences of homology to
be much more widely applied. From those alignments it is then possible
to determine the evolutionary relationship of molecules, and the species
that contain them, at a much higher resolution than previously possible.

This sort of information is commonly represented by phylogenetic
trees (Felsenstein, 2004). The structure of these trees is generally inferred
by one of three approaches: parsimony, distance matrices, or likelihood.
Parsimony uses the principle of “least evolution” to estimate which se-
quences are most closely related. Finding the most parsimonious tree is
an NP-hard problem, but many heuristic methods have been devised to
approach it. When organisms are sufficiently closely related, parsimony
is a reasonable model. Otherwise, multiple changes may have occurred,
and it can be quite misleading. For the distance matrix approach, a dis-
tance is defined between each pair of sequences based, for instance, on
pairwise sequence alignment scores from DP or from a position-by-posi-
tion score relating a pair of sequences sampled from a full multiple align-
ment. Can a tree generated this way have the property that the distance
between any two sequences is the same as the sum of distances through
the vertices that connect those sequences? There is some elegant work on
this problem, which includes the celebrated four-point condition, but it is
almost never the case that a distance matrix is additive. Finally, likelihood
models assume a stochastic model for evolution of the positions along
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branches of the tree. Likelihoods for two trees can be compared using
classical likelihood ratios. Modern Bayesian methods, including simulated
annealing, and Markov chain Monte Carlo methods (MCMCs) are em-
ployed. Work in this area is quite active, and the approach is considered
by many to be the method of choice.

All of these methods have significant limitations. The number of pos-
sible trees is unmanageable for any reasonable number of sequences. Also,
the methods all depend on the calculated alignment of sequences that
contain uncertainties that are not all accounted for in the tree-building
methods. Finally, simplifying assumptions about the independence of the
positions and the uniformity of substitution rates limit the resolution that
can be obtained.

Probabilistic models, such as hidden Markov models (HMMs), have
recently made significant contributions to biological sequence analysis
(Durbin et al., 1998). In protein comparisons, these approaches allow for
position-specific variability in substitution scores. In modeling interact-
ing domains of DNA and RNA, they allow for a more biophysical treat-
ment of the interaction. And in ab initio predictions of gene sequences,
they can better capture the statistical characteristics of genes, including
both content features and signals that delineate boundaries between dif-
ferent segments. For protein-coding genes, such methods can be reason-
ably effective, but for genes that code for RNAs, the problem is much
more difficult and challenging.

Structure Analysis

Determining the three-dimensional structure of macromolecules from
experimental data, such as x-ray diffraction patterns and nuclear mag-
netic resonance measurements, is a mathematically demanding task. A
typical protein structure must be inferred from enormous amounts of in-
formation that indirectly reveal the relative locations of key atoms in a
biomolecular structure. The mapping from structure to data is straight-
forward, but the inverse problem, going from data to structure, is quite
complex. The task is made harder because the experimental data are usu-
ally still too sparse to make a unique inversion possible. Instead, models
must be built to overcome the intrinsic experimental ambiguity. This is
done, for instance, by forcing the models to conform to the best current
knowledge of molecular forces and/or to adhere to a presumed structural
component, such as a peptide backbone in protein chains. Even so, con-
structing these models leads to demanding optimization problems.

Because one-dimensional sequence data abound but three-dimen-
sional structures are generally more useful, understanding the mapping
from sequence to structure is a major goal of molecular biology. Cur-
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rently, the most reliable methods for predicting the structure of a new
protein are based on homology. If the new protein sequence can be in-
ferred to be homologous to a protein with known structure, then it can
also be reliably inferred that the structures of the two proteins are quite
similar. In general, protein structures are more highly conserved through
evolution than their sequences, so the challenge is to identify distantly
related homologous proteins, and progress is ongoing in this direction,
as described in the last section and Chapter 2. Despite decades of re-
search, there has been only modest progress in predicting protein struc-
tures from their sequence alone, ab initio. Experiments have shown that
at least for moderate-sized proteins, sequence information alone is suffi-
cient to specify the molecule’s three-dimensional shape. Understanding
and then reproducing in the computer this transformation of one-dimen-
sional information to three-dimensional information has come to be
known as the protein-folding problem. The development of the model-
ing and computing capability needed to enable calculating structure from
sequence data would clarify many basic issues about protein structure
and function. This capability would also be of practical use in the emerg-
ing field of protein engineering.

Considerable progress has been made on the protein-folding problem
using, on the theoretical side, the statistical mechanics of energy land-
scapes and, on the experimental side, knowledge of protein engineering
and physicochemical kinetics. Of course some progress can simply be at-
tributed to the rapid increase in the power of large-scale computing. The
theoretical advances come from understanding how to characterize the
universal topological properties of the energy surfaces of molecules; this
challenge is deeply connected to the problem of characterizing the com-
putational difficulty of optimization problems. Since the proteins fold on
their own, and fairly rapidly given the enormous number of possible fold-
ing paths and the NP-completeness of the optimization problem, protein
folding must somehow be constrained. The energy landscapes of real pro-
teins must be rather smooth, resembling a funnel leading to the three-
dimensional folded structure rather than the very rugged energy land-
scapes that could be present in principle. The rugged energy landscapes
have globally different optima very far apart in structure, and this is a
handicap to any search for optima.

Until recently, the energy functions used to simulate the folding pro-
cess, built up from the interactions of fragments of protein, were too rug-
ged to yield correctly folded structures. Instead, depending on the fine
details of the optimization process, many unrelated structures were pre-
dicted to represent the global free energy minimum. The funnel-landscape
idea offers a mathematical tool for developing more accurate energy sur-
faces by using bioinformatic patterns in the known database of protein
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structures. Algorithms based on such hybrids of bioinformatics and physi-
cal energy functions begin to approach the accuracy of structure predic-
tions based on homology. Nonetheless, innovative ideas are still needed
to enable predicting the folded structure of proteins.

Useful as the classical protein-folding problem has been in stimulat-
ing interest in the physical chemistry of biological macromolecules, it is
important to recognize that its “solution,” at least across any broad sam-
pling of protein structures, is unlikely. In cells, the self-assembly pro-
cesses that build up biological structures from their components—includ-
ing the folding of many proteins—occur in highly specialized
environments. For example, it has become clear during the past 15 years
that the folding of many proteins is facilitated by local environments pro-
vided by proteins known as chaperones.

To predict the structure of RNAs, efficient algorithms based on ther-
modynamic parameters and DP methods have been available for over 20
years. Yet the best predictions are not very accurate, especially for long
RNAs. The difficulty of making accurate predictions is undoubtedly due
to some combination of the following facts: There is an enormous num-
ber of possible structures with nearly equal predicted energies; available
thermodynamic parameters have limited accuracies; many RNAs require
cofactors, such as magnesium, in the medium in order to fold properly;
and efficient algorithms eliminate some possible structures, such as
pseudoknots, that may be necessary to obtain the correct folding. As with
proteins, RNAs can be folded most accurately by using information from
homologous RNAs with known structure. But in the case of RNAs, it is
also very useful to have related RNAs that, presumably, fold into nearly
identical structures even if none of the structures are known in advance.
Because base-pairing is the strongest force determining RNA structures,
finding base-pairing patterns that are consistent for all of the sample se-
quences can lead to correct structure prediction. Sankoff (1985) published
an algorithm for determining the optimum combination of alignment and
structure scores for a collection of RNA sequences. However, that algo-
rithm is computationally too expensive to be useful for typical numbers
and lengths of sequences, so heuristic approximations have been devel-
oped in recent years to solve this problem.

Dynamics

Many experiments show that biomolecules do not exist as the single
structures envisioned in the simpler forms of structure reconstruction.
Instead, they are present in the body as an ensemble of structures, ther-
mally populating a complex energy landscape. Some reconstructions try
to take this ensemble character into account, but it is difficult to do so, and
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there is no mathematical understanding of the limits of application for
these algorithms. The problem is no longer one of carrying out a simple
optimization but one of achieving a statistically reliable sampling of struc-
tures that conforms to our knowledge of molecular forces. Understanding
the dynamics of molecules is not simply an exercise in modeling random
fluctuations, because in many cases the dynamics of proteins are essential
to their function. It is only by allowing some transformations to occur
quickly and other thermodynamically possible transformations to occur
slowly that a cell can control its behavior.

Computer simulation has made much progress in illustrating the
motions of proteins, yet there are several problems in trying to simulate
completely from molecular dynamics how biological molecules function.
The first challenge is timescale. While the atoms in proteins carry out the
bulk of their motions in less than a picosecond, the fastest characteristic
response time for a cell is in the millisecond range. Evolution has tuned
and selected molecular properties to deliver results on the latter timescale.
Thus, the timescales of importance range over nine orders of magnitude,
and one cannot argue, as is done in computational fluid dynamics, that
short-timescale behavior is important only at small spatial scales and long-
timescale behavior is important only at large spatial scales. The reason for
the timescale gap is that functionally important motions are rare: A movie
of the atoms in a biomolecule could be mostly a great bore, interrupted by
a few dramatic moments. Overcoming the timescale problem will involve
understanding the structure of the possible biomolecular motions and
developing mathematical ways to survey all the possibilities in a statisti-
cally meaningful way.

The high degree of accuracy to which functional dynamics must be
computed is also a challenge for direct simulation. For instance, there
might be only a small amount of energy difference between one binding
state and another, yet the choice of binding state is a critical determinant
of which of several signaling cascades takes place. Thus, calculations must
be done with great precision. However, because even the smallest biologi-
cal macromolecules contain thousands of atoms, how can the energy be
determined this accurately? Cells manage to achieve reliable specificity,
so there must be a principle at work, much like the funnel-landscape idea
for folding, that simplifies the problem. But discovering this principle is a
challenge. Can it be learned after enough four-dimensional binding data
have been determined using machine learning techniques? In his 1905
papers on Brownian motion, Einstein noted that at the large size scale of
macromolecular assemblies in the cell, energies of very small order still
reign and determine where things go. As an example, it is now believed
that the stability of the chromatin packaging of DNA comes from attrac-
tive electrostatic forces between ions of like sign. Understanding the con-
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nection of very small forces to the macromolecular interactions occurring
within the cell remains a grand computational challenge.

Interactions

Interactions between macromolecules play many essential roles. They
occur in all combinations, with protein-protein and protein-DNA/RNA
being the most studied. Complexes of multiple proteins are important in
metabolic reactions where reactants can pass between enzymes to increase
efficiency and reduce concentrations of intermediates. They are impor-
tant in large intracellular structures, such as various types of filaments
that provide both rigidity and directed motion within and between cells.
Protein-protein interactions are essential in various signal transduction
pathways where proteins modify one another to alter their properties.
Cascades of such protein modifications are at the heart of processes that
transfer information and signals between cellular components, and they
allow cells to respond to their environment by altering their behavior.

Experimental approaches to determining the interactions between
proteins have greatly expanded in the last few years, and there is now
considerable data about specific interactions. However, these experimen-
tal methods tend to produce noisy data, and it remains a challenge to
extract the true information. Some computational methods have proven
useful in detecting interacting proteins, such as correlated occurrence in
phylogenetic comparisons. While not currently feasible, computational
methods to predict protein interactions based on compatible surfaces—
essentially predicting the docking of large molecules—would be a major
advance. One practical application of progress in this area would be the
design of small-molecule drugs that interfere with specific protein-pro-
tein interactions.

Protein interactions with DNA and RNA are the primary mechanisms
for controlling gene expression. In specific cells under specific conditions,
only a subset of genes is expressed at any given time. Based on environ-
mental signals, a fraction of the regulatory proteins will be expressed and
active. Their sequence-specific interactions with regions of DNA will de-
termine the set of genes expressed during the next interval. Statistical
methods for predicting DNA target sites for specific proteins, given previ-
ous examples of similar sites, can be useful for discovering new regula-
tory interactions. What is needed is a recognition code that maps from the
protein sequence (and utilizes the known structures of the transcription
factor families) to a pattern that describes the family of DNA binding sites.
Statistical methods have been applied to this problem, but current perfor-
mance is far from adequate. Combinations of statistical methods and bio-
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physical principles appear promising but are just in their infancy (Benos
et al., 2002).

Many of the interactions between macromolecules define networks,
both metabolic and regulatory. Simply knowing the components of the
networks and the connections between them is not sufficient to under-
stand or model their behavior. The levels of different components of the
networks can vary over space and time and are often small enough that
discrete modeling is important. In regulatory networks, each of the stan-
dard binary logic gates can be implemented by combinations of small
numbers of proteins interacting with DNA; in other cases, continuous
output values, sometimes with high gain, can be achieved by a similarly
small number of components. Even in the best-studied cells, the network
of functional interactions is only now being mapped out at the scale
needed. All mathematical descriptions that adequately model the diverse
components at suitable resolution while also capturing the stochastic char-
acter of intermolecular partnership and the complexity of individual
biomolecular dynamics remain a distant goal but one that the community
of mathematical and physical scientists is beginning to tackle.

FUTURE DIRECTIONS

There are many daunting mathematical challenges to understanding
and modeling the molecular aspects of biology. Technological advances
continue to increase the quantity of data that can be obtained and, more
importantly, to enable the collection of data that were not previously avail-
able. This flood of data promises enormous advances in our understand-
ing of biology in the coming decades, but that promise depends on the
coincident development of mathematical approaches and applications.

Sequence databases will continue to grow at a rapid rate (currently
doubling about every 15 months), increasing our ability to identify ho-
mology relationships and improving the evolutionary models on which
those identifications depend. Increasingly comprehensive data will allow
us to abandon some of the simplifying assumptions that were previously
required and to develop more realistic models. The great increase in se-
quence data will also step up the demand for improvements in the map-
ping from sequence to structure and function.

Improved mathematics is also required for advances in the biophysi-
cal modeling of molecules and cells. Predictions of structures and interac-
tions based on physical principles should significantly complement the
results from evolutionary studies and are necessary for advances in pro-
tein design and other areas of synthetic biology and biological engineer-
ing. Improvements in modeling the dynamics of biological systems that
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take into account the range of important scales of space, time, and num-
ber of components—for example, whether discrete or continuous models
are needed—are necessary to develop accurate and predictive models of
cellular behavior.

Mathematical models at all scales are important in biology and will
become increasingly so. One of the critical areas of development will be
the interactions between models and experiments. Every scientist devel-
ops models from data and uses those models to design the next experi-
ments. But as the data become increasingly numerous and complex and
the models ever more mathematical, it will become even more necessary
to rely on mathematical and computational methods in the design of ex-
periments. Determining the set of plausible models that explain the cur-
rent information and then identifying the most informative experiments
to distinguish between those models is a challenge even now and will be
an increasingly central challenge in the future. For example, expression
data can provide information about sets of plausible regulatory networks
but are unlikely to define a single best network. By comparing the differ-
ent implications of plausible networks, it should be possible to design
experiments that best distinguish between them (Ideker et al., 2000).

The molecular level deals with the most basic components of the cell.
Key molecules include the heritable material that permits the propagation
of biological properties from generation to generation, while also display-
ing the variation that underlies evolution. Interacting sets of biological
molecules are required for the behavior of cells and organisms, but they
are not sufficient to predict this behavior. Cells, which will be discussed
in the next chapter, provide a first example of the large gulf between suc-
cessive levels of biological organization.
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4

Understanding Cells

INTRODUCTION

To understand cells, one must understand the macromolecular struc-
ture of cells, the spatiotemporal patterns and mechanisms of cellular
dynamics, the connections between cellular dynamics and cellular func-
tions, and the connections between cells and higher levels of organiza-
tion, such as tissues and organs. Understanding cells is intrinsically more
difficult than understanding molecules because there is no cellular coun-
terpart to the linear sequence of nucleotides and amino acids that pro-
vides much of the information necessary for predicting the structure and
function of nucleic acids and proteins. Moreover, eukaryotic cells are
highly compartmented and contain both a nuclear genome and one or
more organellar genomes. With rapid increases in computational power
and the sophistication of biophysical measurements, one can imagine
constructing reasonably exact models of the dynamics of DNA and pro-
teins, whereas all quantitative descriptions will still be approximate for
cells. Thus, the main challenges for the mathematical analysis of cells are
not computational but reside instead in the basic challenge of how to
model features of interest. The primary challenge in this area for the next
decade is the systematic formulation of reduced-order representations of
cellular structure and dynamics, drawn from increasingly complex data
and validated in model-driven experiments.

There is a long and successful history of mathematical modeling of
cellular functions. The success stories come from systems that are rich in
data and for which models can be validated or at least put in direct corre-
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spondence with experiments. Models of the endocytic cycle, signal trans-
duction cascades, and the cell division cycle have been productively used
to organize data, extract “laws” for cellular processes, and even engineer
cellular systems. Nevertheless, the models formulated over the past two
decades build primarily on population-level measurements with poor
spatial and temporal resolution. Without exception, the dynamics pre-
dicted by early models were richer than those predicted by the corre-
sponding experimental data. For example, current models of cell cycle
dynamics have more variables than can be measured experimentally. This
experimental limitation is changing as a result of the rapid development
of imaging techniques and high-throughput assays of cellular processes.
The result should be an increased ability to evaluate models, which is the
limiting step in improving them. It is now possible to collect multivari-
able and spatiotemporally resolved data on cellular processes ranging
from molecular trafficking and signal transduction to integrated responses
such as the cell division cycle and cell migration.

In spite of these improvements in experimental capabilities, the quan-
titative models that emerge will not be as resolved and detailed as the
models used in, for example, the aerospace and semiconductor industries.
This difference reflects the intrinsic variability of biology, the immense
spatiotemporal complexity of cells, and our incomplete knowledge of cel-
lular processes. In many areas of the physical sciences, a coarse model can
be very simple and yet fairly accurate, and one only needs to develop
heterogeneous, multivariable, spatially resolved models when dealing
with second- or higher-order effects. In contrast, even the simplest cellu-
lar models must be extracted from heterogeneous, multivariable, spatially
resolved experimental data. Learning how to manage these data and mine
them to extract computationally manageable models of cellular functions
is the key challenge to quantitative understanding of cells.

Exemplification of These Issues

In the early 1980s, Steven Wiley and his colleagues formulated kinetic
models of receptor-mediated ligand internalization (Wiley and
Cunningham, 1981). The models were initially developed for the epider-
mal growth factor (EGF) receptor, a key regulator of cell and tissue func-
tions across species (Wiley, 2003). The models described the kinetics of
ligand-receptor binding, internalization, recycling, and degradation. The
mathematical models were in the form of small systems of ordinary dif-
ferential equations that were integrated in time and coupled with stan-
dard optimization and parameter estimation routines to extract the model
parameters (Figure 4.1).

Based on experiments with radioactively labeled EGF ligands, the
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FIGURE 4.1 Trafficking of ErbB receptor family. Only the epidermal growth fac-
tor receptor (EGFR) and ErbB2 proteins are shown for clarity, but the behaviors of
ErbB3 and ErbB4 are similar to that of ErbB2. Activated EGFR and EGFR:ErbB2
heterodimers are internalized through a coated pit pathway, but other members
of the ErbB family are probably internalized by a smooth pit pathway. The num-
bers next to the arrows represent the approximate mean time of the specific pro-
cess. The time constants for heterodimerization and formation of multivesicular
bodies are unknown. The mean time for lysosomal degradation is a combination
of the time necessary for multivesicular body formation and for lysosomal fusion.
Reprinted from Experimental Cell Research, 284, H.S. Wiley. Trafficking of ErbB
receptors and its influence on signaling, pp. 78-88 (2003), with permission from
Elsevier.
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models could extract the rate constants for different processes, such as
endocytic uptake or recycling. Before this modeling effort, the only quan-
titative measures of ligand-receptor dynamics in cells were related to
ligand-receptor interactions. The models of Wiley and colleagues pro-
duced new quantitative measures of ligand-receptor dynamics. In this
way the biological effects of various ligands could be interpreted in terms
of the quantitative differences of a larger number of rate constants for the
multiple steps in the endocytic pathway. The model was also critical for
suggesting the functional roles of the different parts of the EGF receptor.
The EGF receptor is a large protein that combines multiple functions,
including ligand binding, receptor phosphorylation, internalization,
endocytic sorting, and recycling. By analyzing the ligand uptake data in
cells that express mutant receptors and fitting these data to models, the
functional roles of specific residues could be identified by changes in the
rate constants of specific cellular processes (Wiley et al., 1991).

This modeling and experimental approach has been validated by a
number of experiments and used to parse the dynamics of internalization
and trafficking for other ligand-receptor systems (Wiley et al., 2003). In
the meantime, the experimental tools used to study these processes have
changed. It is now possible to visualize multiple steps of ligand-receptor
interactions and the endocytic cycle at the single-cell level and in real time
(Sorkin et al., 2000). Furthermore, many new molecules have been identi-
fied in each of the steps of the endocytic cycle. For example, the recruit-
ment of the ligand-bound receptor to the coated clathrin pits and the trans-
fer of receptors to early endocytic compartments rely on tens of proteins.
Protein-protein interactions in this system can be assayed using powerful
biophysical techniques, and new components can be discovered by high-
throughput proteomic approaches (Blagoev et al., 2003). In connection
with this increased appreciation of the underlying molecular complexity
of the system, it becomes necessary to rethink the mechanistic meaning of
the endocytic rate constants predicted by the original model. How should
the current model be changed to incorporate new data? Should the new
models necessarily have more variables and parameters? Or, alternatively,
can the old models be “parameterized” by new interactions? Given the
structural complexity of living cells and the significant cell-to-cell varia-
tions, it is unlikely that useful models will account for every protein dis-
covered in the endocytic cycle. But, for this and every other cellular sys-
tem, it remains an open question how to use the new and much richer
data to formulate the simplest model that can be used to correlate data
and formulate new experiments. The main point is that, at this time, the
data are richer than the models, which was not the case in the 1980s and
1990s.
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CELLULAR STRUCTURES

In the same way that knowledge of the composition and structure of
biomolecules is the key to understanding their biological function, de-
tailed knowledge of the structure of cells is a prerequisite for the quantita-
tive understanding of cellular functions. Mathematics plays an important
role in characterizing the intracellular architecture (Figure 4.2). At one

FIGURE 4.2 Applications for quantitative imaging. The image shows an XlK2 cell
during the process of cytokinesis stained for DNA, microtubules, and the aurora-
B protein kinase. Although the image demonstrates the relative localization of
different cellular components and structures, quantitative analysis reveals spe-
cific characteristics that can be used to assay the effects of inhibitors on expressed
proteins. For example, integrating the signal from a DNA-specific fluorophore
might reveal defects in chromosome segregation during mitosis. Measuring the
overlap of microtubules and aurora-B (using, for example, a cross-correlation
analysis) within a subregion of a dividing cell might be a means of assessing effec-
tors of cytokinesis. The image is displayed within the Open Microscopy Environ-
ment Image Viewer. The viewer includes support for displaying multidimensional
image data (top left) and some of the associated metadata about each image (bot-
tom right). SOURCE: Swedlow et al., 2003.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


56 MATHEMATICS AND 21ST CENTURY BIOLOGY

level, the mathematical sciences have enabled progress through contribu-
tions to the development of instrumentation and other tools. For instance,
the explosion of information about the spatiotemporal dynamics in cells
would have not have been possible without earlier progress in imaging
and data-processing algorithms. Tools such as deconvolution microscopy
rely on robust numerical algorithms. Moreover, sophisticated data-pro-
cessing algorithms have become more accessible to biologists through
packages such as Matlab and Metamorph. New data-related challenges
are emerging. For example, the assembly of large imaging datasets re-
quires advances in bioinformatics and data mining. The informatic as-
pects of intracellular imaging are therefore receiving increased attention
(Swedlow et al., 2003; Young et al., 2004).

Quantitative imaging enables the formulation of data-driven models
of intracellular dynamics and transport. The most notable examples in-
clude the quantitative analysis of the dynamics of Golgi to plasma mem-
brane transport (Hirschberg et al., 1998) and nucleocytoplasmic shuttling
(Smith et al., 2002). In both cases, green fluorescent protein (GFP)-based
imaging provided data of unprecedented spatiotemporal resolution; nev-
ertheless, it was possible to formulate simple compartmental models
based on a small number of linear ordinary differential equations. Newer
models enable the identification of the rate-limiting steps of the process
and the formulation of testable hypotheses. Conclusions about the mecha-
nisms in each case were based on the analysis of a small number of cells. It
is unlikely that models of intracellular protein transport and trafficking
will remain simple as knowledge of the processes grows and incorporates
information on cell-to-cell variation. More sophisticated models that use
nonlinear partial differential equations based on the geometry derived
from imaging have been used to describe the intracellular dynamics of
calcium and metabolites (Slepchenko et al., 2003). In each case, the main
challenge in assessing the validity of quantitative predictions lies in care-
ful analysis of the underlying assumptions, such as the use of Fickian
diffusion to model the intracellular transport of proteins and small
molecules.

Recent years have witnessed the discovery of a large number of highly
organized, coherent, dissipative structure in cells, including waves of in-
tracellular calcium and metabolites and protein concentration waves ac-
companying the division of bacterial cells (Kindzelskii and Petty, 2002;
Schuster et al., 2002). While the general phenomenology of these struc-
tures is understood from the standpoint of nonlinear dynamics and physi-
cochemical pattern formation, how these structures arise and how they
are maintained and used by cells is a topic of intense research. Mathemati-
cal analysis of these processes requires significant extensions of the theory
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and computational methods for control of spatially distributed nonlinear
systems.

In addition to studying and modeling intracellular structures, it is also
important to model the possible mechanisms for their emergence from
macromolecules. A number of experiments suggest that simple physico-
chemical principles can drive the emergence of cellular life (Szostak et al.,
2001; Hanczyc et al., 2003; Chen et al., 2004). Indeed, experiments with
nucleation of lipid vesicles by clays and the competition of protocells con-
taining RNA polymerase suggest that the mechanisms of the formation of
cells and intracellular compartments can be systematically studied in the
test tube. Molecular simulations of these processes and population bal-
ance modeling of the evolution of primitive cellular compartments may
provide the link between models at the molecular and cellular scales.

DISCOVERY OF CELLULAR NETWORKS AND
THEIR FUNCTIONS

Since networks of interacting proteins control all cellular functions,
understanding cellular functions requires quantitative analysis of the spa-
tiotemporal dynamics of these networks in the cellular environment (Fig-
ure 4.3). Efforts to elucidate their dynamics can be subdivided into the
analysis of network topology, dynamics, spatial organization, and func-
tion. Most of the progress recently has been in the area of deducing the
network topology, using the classical techniques of cellular and molecu-
lar biology, large-scale molecular profiling experiments, or bioinformatics
approaches (Brent and Finley, 1997; Chen and Xu, 2003; Ideker, 2004; Irish
et al., 2004; Schulze and Mann, 2004; Xia et al., 2004; Yeger-Lotem et al.,
2004). While there is significant room for the validation and perfection of
each of these approaches, there is an urgent need to compare the net-
works predicted by distinct methods (Greenbaum et al., 2003). Because of
the difficulties associated with generating high-quality data on cellular
dynamics, much less work has been done in the analysis of network dy-
namics. For instance, some of the most interesting results associated with
network dynamics have required construction of special experimental
systems that include fluorescent reporters for a large number of bacterial
genes coupled with high-resolution analysis of bacterial responses over a
broad range of experimental conditions. This approach has led to the vali-
dation of the network motifs predicted on the basis of bioinformatics
analysis and has identified the dynamic and functional roles of these mo-
tifs (Shen-Orr et al., 2002; Kalir and Alon, 2004; Zaslaver et al., 2004).

The simplest use of mathematical models for intracellular networks is
to integrate data and test if they fit together. For example, mechanistic

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


58 MATHEMATICS AND 21ST CENTURY BIOLOGY

FIGURE 4.3 Transcriptional regulatory networks and motifs. (A) HNF1α, HNF6,
and HNF4α are at the center of tissue-specific transcriptional regulatory networks.
In these examples selected for illustration, regulatory proteins and their gene tar-
gets are represented as circles and boxes, respectively. Solid arrows indicate pro-
tein-DNA interactions, and genes encoding regulators are linked to their protein
products by dashed lines. The HNF4α1 promoter is poorly expressed in pancre-
atic islets and is shaded to reflect this. The HNF4α7 promoter, also known as the
P2 promoter, is the predominant promoter in pancreatic islets and was recently
implicated as an important locus for human diabetes susceptibility. For clarity,
some gene promoters have been designated by the names of their protein prod-
ucts (e.g., HNF1α for TCF1, SHP for NR0B2, HNF4α7 for HNF4A P2, and HNF1β
for TCF2). (B) Examples of regulatory network motifs in hepatocytes. For instance,
in the multicomponent loop, HNF1α protein binds to the promoter of the HNF4α
gene, and the HNF4α protein binds to the promoter of the HNF1α gene. These
network motifs were uncovered by searching binding data with various algo-
rithms; details on the algorithms used and a full list of motifs found are available.
SOURCE: Odom et al., 2004.
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models of the cell division cycle in fission yeast summarize the dynamic
behavior of multiple mutants and make testable experimental predictions
(Tyson et al., 2001). Most of the “realistic” models of intracellular net-
works, including the widely publicized models of the lysis-lysogeny
switch in bacteriophage lambda and models of growth factor signaling,
were severely overparameterized (Arkin et al., 1998; Schoeberl et al., 2002).
On the one hand, the models have to be large to be able to predict the
effects of genetic or biochemical perturbations of network components,
and on the other, the models must have the lowest required number of
parameters and processes to explain the observed phenomenology.

At this time, there are no standards for assessing the complexity of a
model and whether it is indeed a minimal representation of data. Fur-
thermore, current models are characterized by high levels of uncertainty,
both structural and parametric. This situation is not surprising, given
that even the most comprehensive models may be missing entire parts of
a network, may neglect its spatial organization and temporal evolution,
and may employ approximate functional forms for various cellular pro-
cesses. While some tools for dealing with these issues can be borrowed
from linear control systems (Csete and Doyle, 2002), new theoretical and
computational approaches are required to analyze highly uncertain and
nonlinear systems. These new approaches require solving problems in
simulation, system identification, parameter estimation, and experimen-
tal design.

Recently, robustness has emerged as an important principle for
model screening and validation (Barkai and Leibler, 1997; Stelling et al.,
2004). In a nutshell, the relative plausibility of two models for the same
process can be assessed by comparing the size of the parametric pertur-
bations that can be tolerated by the models without qualitatively chang-
ing the predicted behavior. The rationale for using robustness as a screen
is that evolution seems to favor the most robust mechanisms. For ex-
ample, two models of the cell division cycle can be compared on the basis
of the size of the regions of the parameter space that predict the limit
cycle behavior (Morohashi et al., 2002). Analysis of robustness requires
tools that can be used to compare models with different numbers of pa-
rameters and even different mathematical structures. The method of
mathematically controlled comparisons is a very important development
in this direction (Alves and Savageau, 2000). On the experimental side,
the model-driven analysis of the robustness of cellular systems requires
quantitative characterization of natural and induced parameter variations
in cells (Houchmandzadeh et al., 2002; Jones et al., 2004). Quantitative
and multivariable analysis of cell-to-cell variations is becoming possible
thanks to advances in flow cytometry and live cell imaging (Irish et al.,
2004).
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The number of systems that have been characterized over the entire
range from the biochemical description of the network to its dynamics
and function is still very small. One of the best examples is the result of
efforts by Ferrell and co-workers, who have analyzed the function of the
mitogen-activated protein kinase (MAPK) network, a three-stage enzy-
matic cascade conserved from yeasts to humans. In an elegant sequence
of papers, Ferrell et al. have shown that the multistage nature of the cas-
cade enables it to act as a switch that is insensitive to small inputs at the
top layer of the cascade and is fully activated when the threshold value
for the input has been crossed (Huang and Ferrell, 1996; Ferrell, 1997;
Ferrell and Machleder, 1998; Bagowski and Ferrell, 2001; Ferrell and
Xiong, 2001; Xiong and Ferrell, 2003). This prediction, based on extensive
computational analysis of the cascade model, has been validated through
in vitro experiments with purified components of the network. The bio-
chemical and modeling work set the stage for the analysis of MAPK dy-
namics in the frog oocyte maturation response. In this response system, it
became apparent that the MAPK cascade is embedded in a positive feed-
back circuit that sharpens the threshold-detection capabilities of the cir-
cuit and mediates the irreversibility of the cell’s maturation response to
hormones. This insight was enabled by the large size of the frog oocyte,
which made it possible to carry out single-cell biochemical assays of cellu-
lar responses, once again underscoring the importance of examining cel-
lular responses at a single-cell level. Other examples of quantitative analy-
sis of network dynamics at the single-cell level are now available (Irish et
al., 2004; Jones et al., 2004; Lahav et al., 2004; Nelson et al., 2004; Raser and
O’Shea, 2004).

The reductionist approach to cellular networks, which focuses on
single modules such as the MAPK cascade or the EGF receptor pathway,
has been reasonably successful. However, it must be realized that these
modules do not operate in isolation and are affected by the large number
of other processes occurring simultaneously. For example, genetic and
biochemical evidence indicates that the MAPK cascade is coupled to es-
sentially every other signal transduction pathway in cells. Quantitative
understanding of cross talk in biochemical networks is necessary in order
to probe these “cellular context” effects. While a modeling approach to
the problem can start with simulations of coupled signaling or with ge-
netic models, the eventual success of these models will depend on the
availability of convenient experimental systems where pathway cross talk
can be analyzed at the quantitative level.
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FIGURE 4.4 Modular view of the chemoattractant-induced signaling pathway in
Dictyostelium. Except for those in parentheses, the proteins depicted in this path-
way have been shown to be involved in chemotactic signaling through analysis of
cells in which the genes have been deleted. SOURCE: Manahan et al., 2004.
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FROM NETWORKS TO CELLULAR FUNCTIONS

After the analysis of gene and protein networks, the next goal in the
quantitative understanding of cells is modeling integrated responses and
functions, such as cell differentiation, migration, and the DNA damage
response (Figure 4.4). Phenomenological models have been successful in
correlating data and discovering qualitative trends in cellular responses.
For example, simple biophysical and rheological models have been used
to explain the biphasic dependence of cell migration speed on the adhe-
siveness of the substrate on which the cell is migrating (Lauffenburger
and Horwitz, 1996). Simple birth-death processes have been used to model
cell division and cell differentiation (Loeffler and Wichmann, 1980).

The earlier phenomenological models must be extended to integrate
increasing amounts of information about each of these responses. In the
case of cell migration, the intracellular rheology and motile behavior of
cells is under the control of signal transduction and cytoskeletal networks
that can now be monitored in real time and with increasing spatial resolu-
tion (Soll et al., 2000). Each of the biophysical and biochemical modules in
cell migration, from signal transduction by integrins to the spatiotempo-
ral dynamics of actin polymerization, is the subject of an extensive model-
ing effort (Grimm et al., 2003; Manahan et al., 2004). Notably, the model-
ing formalisms necessary to describe the integrated response have to be
heterogeneous, in the sense that they differ in the amount of mechanistic
detail incorporated in each specific model and in the mathematical struc-
ture of the model. For instance, a stochastic model of actin polymerization
has to be coupled to deterministic models of the interactions between
integrins and adhesive peptides. The main challenges for the develop-
ment of quantitative models of cellular responses are related to the
multiscale nature of each particular response and to the significant struc-
tural and parametric uncertainty of the current models. Integrated mod-
els of cell migration, currently being developed by the Cell Migration
Consortium (http://www.cellmigration.org/), can be used as surrogates
to test whether they can manifest the behavior predicted by earlier phe-
nomenological models (Horwitz et al., 2002).

Perhaps the richest example of a cell-migration phenomenon that has
been productively analyzed with the aid of quantitative models is bacte-
rial chemotaxis (see Box 4.1). The ability of many bacteria to swim toward
potential food sources or to evade noxious chemicals involves a complete
cycle of signal detection and signal transduction and an elaborate response
by cellular motility systems. To mount an effective chemotactic response,
bacterial cells must not only detect the relevant chemical but also regulate
behavior on the basis of spatial and temporal gradients in the signal. A
different phenomenon, which also involves global changes in the regula-
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tion of bacterial genes in response to chemical signals, is quorum sensing
(for a review, see Daniels et al., 2004). In this case, bacteria in a growing
population both generate the chemical signal and respond to it. No one
bacterium makes enough of the chemical to trigger the response system;
however, once cell densities reach a threshold level (i.e., a “quorum” is
achieved), the whole population of bacteria alters its regulatory state. This
system, too, has attracted increasingly sophisticated mathematical model-
ing (Chopp et al., 2002; Ward et al., 2001, 2003). Some of this research is
explicitly directed at exploring the potential of novel antibacterial drugs
that would disrupt quorum sensing (Anguige et al., 2004); this concept is
appealing since the regulatory change that many bacteria undergo when
cell densities are high leads to increased expression of gene products that
severely damage the tissues of an infected host.

Many instances of signal transduction and information processing in
cells have been based on population-averaged data derived, for example,
from Western blotting for the analysis of protein modification, as exem-
plified by Hoffmann et al. (2002) and Schoeberl et al. (2002). Currently,
multicolor flow cytometry and high-throughput protein localization as-
says can monitor these processes at single-cell resolution and correlate the
information obtained with responses measured at a single-cell level, such
as the migratory tracks of individual cells or the differentiation responses
of single cells. These data are enabling the systematic analysis of the het-
erogeneity of cellular responses (Krooshoop et al., 2003; Abraham et al.,
2004; Irish et al., 2004). Statistical analysis of the resulting large sets of
heterogeneous data—for instance, cell trajectories, protein modification,
and localization—will become an important area of future research. In the
end, models of cellular responses that can be used in biotechnology and
medicine are likely to be reasonably simple correlations, similar in form
to but more realistic than the phenomenological models of cellular re-
sponses developed over the past two decades.

The ultimate challenge in modeling cellular responses to signals is to
track cause-and-effect relationships throughout the pathways leading
from signal detection to cellular response. For most biological systems,
this goal is remote. For relatively simple phenomena such as bacterial
chemotaxis (see Box 4.1), many of cause-and-effect links, all the way from
detection of chemical gradients to cellular locomotion, are now known.
However, in systems of more typical complexity—particularly in multi-
cellular organisms—the complexity on the response side of signal-re-
sponse pathways poses immense challenges to modeling techniques.
Progress appears likely to involve relatively detailed modeling of the up-
stream processes and, when possible, the final steps, such as cell motion.
However, modeling of the linkage between the front and back ends of
signal-response processes will often require heuristic methods that sim-
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Box 4.1
Bacterial Chemotaxis

Bacterial chemotaxis in Escherichia coli (E. coli) is the best understood
signal transduction system where one can go all the way from the molecu-
lar composition and subcellular organization of the biochemical network
to the response of a single cell or population of cells (Berg, 2000). The
current picture is a result of extensive genetic, biochemical, and biophysi-
cal analysis of this system over the past 50 years. The evolution of the
quantitative understanding of bacterial chemotaxis shows unequivocally
that helpful quantitative models are impossible without experimental inno-
vations and are greatly enabled by the ease of genetic manipulation of the
system.

The phenomenon was originally described by Adler at the macro-
scopic level as a directed flux of bacteria in gradients of nutrients such as
aspartate (see Berg (2000) for a review). Berg and colleagues, who de-
signed a tracking microscope that generated information about the migra-
tory tracks of single cells, described the microscopic nature of bacterial
chemotaxis. In isotropic environments, the path of E. coli is composed of
straight runs punctuated by brief tumbles that can change the direction of
migration. In a gradient of chemoattractant, the runs between the tumbling
events are increased. At the population level, this change in the micro-
scopic behavior of a single cell generates a directed flux of cells toward a
source of a chemoattractant. Gradient sensing is mediated by ligand-recep-
tor interaction at the cell surface that induces a sequence of biochemical
reactions in the cytoplasm and culminates in the generation of the diffus-
ible cytoplasmic molecule that binds to the motor powering the bacterial
flagella, biases the sense of its rotation, and in this way changes the fre-
quency of the tumbling events. The output of the circuit, defined as the
frequency of the tumbling events, reflects the temporal derivative of recep-
tor occupancy, which can be “measured” by bacteria with very high sensi-
tivity and speed. The circuit is characterized by a very wide dynamic range,
which is mediated by negative feedback loop in the signal transduction
cascade. Today, we have detailed information about the genetics and bio-
chemistry of the chemotaxis network in E. coli, we know the three-dimen-
sional structures of several key proteins, we can monitor their interactions
in vivo and in real time, and we can reconstitute parts of the network in
vitro and measure the relevant thermodynamic and rate constants.

Bacterial chemotaxis has become a fruitful arena for modeling and
computational analysis. Essentially every part of the circuit, from cell sur-
face receptor to the flagellar motor, gave rise to mathematical models,
ranging from structural descriptions of protein organization in the mem-
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brane (Bray and Duke, 2004), to the dynamics of signal transduction in
the cytoplasm (Barkai and Leibler, 1997), to the kinetic theory of bacterial
transport (Hillen and Othmer, 2000). The two most notable modeling ef-
forts are the Berg and Purcell theory of ligand concentration measurement
in gradient detection (Berg and Purcell, 1977) and the Barkai-Leibler
model of robustness in the adaptation part of the circuit (Barkai and
Leibler, 1997). Berg and Purcell used a model to test the hypothesis that
bacteria can sense temporal gradients on the timescale of seconds. To test
this hypothesis, they developed a very elegant stochastic biophysical
theory of diffusion-limited ligand receptor binding. As a result of their
analysis, they have concluded that bacteria can indeed measure concen-
trations and “take the temporal derivatives” of concentrations within a
very short period of time. Their analysis was based on the assumption that
receptors are distributed randomly over the surface of the cell. Subse-
quently their results were rederived by Szabo et al. (1982), using a much
more transparent approach based on the homogenization theory and
tested in direct Brownian dynamics simulations by Northrup (1988). The
Berg-Purcell model of ligand-receptor binding in bacterial chemotaxis has
become a classic in the theory of diffusion-limited reactions, continues to
enjoy extensive citations, and has entered the textbooks in biophysics. At
the same time, the electron microscopy images of E. coli produced in the
early 1990s show that the main assumption of the theory, the random
distribution of receptors, is not satisfied and that receptors are clustered in
one region of the cell surface (Parkinson and Blair, 1993). Independent
confirmations of this result and biochemical proof of receptor clustering
gave rise to a new wave of models that attempt to explain their functional
significance. At this time, it is established that receptor clustering is cru-
cial for high sensitivity of the gradient sensing system. The dynamics and
spatial organization of receptor clusters is now studied in models that are
firmly grounded in the structural details of protein-protein interactions in
bacterial chemotaxis (Bray and Duke, 2004).

While we are still a long way from having an integrated model of
bacterial chemotaxis that would integrate all the structural, genetic, and
biochemical evidence, analysis of this system over the past decades sets
an excellent example of the most productive integration of experiments,
multiscale biophysical modeling, and mathematical analysis (Erban and
Othmer, 2005). One of the natural questions is whether the biophysical
mechanisms of gradient detection in E.coli can be useful for understand-
ing these processes in other cell types. A first step in this direction was
taken in a recent computational model that compared the control strate-
gies in E.  coli and B. subtilis (Rao et al., 2004).
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ply capture cause-and-effect correlations rather than providing quantita-
tive models of actual pathways.

FROM CELLS TO TISSUES

Quantitative descriptions of cellular processes and functions form the
basis for models at the tissue and organism level (Figure 4.5). Population-
level modeling of cell migration is a good example of this approach
(Maheshwari and Lauffenburger, 1998). Statistical analysis of the migra-
tory tracks of single cells can be used to extract the probability density
functions of cell velocities, turning frequencies, persistence time, and other
variables. Such information about the properties of a single cell can be
used to derive partial differential equations for the evolution of cell densi-
ties. The dynamics predicted by these equations can be quantitatively
compared with the measurements of cellular fluxes (Hillen and Othmer,
2000). The same general framework, in which a microscopic description
of particle motion is used to predict the evolution of particle ensembles, is
encountered many times in the natural sciences—for example, in the deri-
vation of the kinetic theory of gases or in the equations of fluid motion
from the detailed description of molecular motion. The rules of cellular
motion are much more complex than those governing the molecules in an
ideal gas. However, cellular trajectories can be visualized with much
greater ease than the trajectories of interacting molecules in gases or flu-
ids (Othmer et al., 1988; Painter and Sherratt, 2003). An integrated pro-
gram of this kind was implemented for bacterial and animal cells in the
1980s (Farrell et al., 1990). Today, similar analyses can be complemented
with increasingly detailed information about the coupling between intra-
cellular processes, such as signal transduction or cytoskeletal dynamics,
and cellular responses, such as proliferation and migration. Multiscale
models for the evolution of cell densities are being constructed to describe
E. coli chemotaxis (Bren and Eisenbach, 2000; Erban and Othmer, 2005).
Analysis of these models poses many challenging problems for multiscale
theory and numerical analysis.

Modeling of tissue patterning is another example of analysis at the
tissue level that is based on extensive studies of cellular processes. One of
the mechanisms for generating cell diversity in embryogenesis is based
on patterning of an epithelial layer, whereby a lattice of initially identical
cells is presented with a spatial gradient of a ligand that binds to cell sur-
face receptors and induces gene expression in target cells (Tabata and
Takei, 2004). The level of cell surface receptor occupancy can be directly
translated into the transcriptional response of the target cell. In this way,
the spatial gradient of an extracellular ligand can be translated into a spa-
tial pattern of gene expression in a layer of “naive” cells. Morphogen gra-
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dients are established by the combination of localized secretion of ligands,
their extracellular transport, binding to cell surface receptors, and intra-
cellular trafficking processes. Computational models can be used to iden-
tify the relevant spatial and temporal scales in the generation of the
morphogen gradients and to evaluate the relative feasibility of competing

FIGURE 4.5 Dictyostelium development cycle and position of cell types within the
multicellular differentiating organism. SOURCE: Kimmel and Firtel, 2004.
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hypotheses (Lander et al., 2002; Kruse et al., 2004). These models can be
based on earlier quantitative models of ligand-receptor dynamics in cells
and on the current imaging experiments in developing tissues
(Lauffenburger and Linderman, 1993).

Experimental models such as those for bacterial quorum sensing and
slime mold aggregation enable biochemical and genetic analyses of the
emergence of multicellular behavior in populations of seemingly identi-
cal cells (Taga and Bassler, 2003; Chisholm and Firtel, 2004). Detailed un-
derstanding of cell-to-cell communication is the key to developing in-
tegrative models of these processes (Nagano, 2000; Dockery and Keener,
2001). In all current biology textbooks, cell communication proceeds in a
unidirectional way, where the signal is received by the cell and interpreted
to direct cellular responses. In reality, cell-cell communication protocols
are not unidirectional. Cells can both receive and respond to extracellular
signals; hence they actively modify their environments. At the same time,
cells are generating and responding to mixtures of signals. Modeling of
such cell-cell communication protocols is complicated by the experimen-
tal difficulties associated with quantifying the dynamics and spatial regu-
lation of cell communication signals. For example, mammalian cells can
secrete a large number of soluble growth factors. The molecular identity
of these signals and their potential roles in spatiotemporal information
processing by cells is only beginning to be understood (Werb and Yan,
1998).

In addition to studying the processes through which single cells as-
semble into spatial patterns and tissues, it is important to study how tis-
sues devolve to cells, as they do, for example, in the epithelial-mesenchy-
mal transition (EMT), one of the critical steps in tumorigenesis. Genetic
studies show that relatively small networks of genes can mediate EMT
(Hahn and Weinberg, 2001). Translating this information into the integra-
tive descriptions of epithelial dynamics poses an exciting and important
problem for modeling.

DATA INTEGRATION

Rapid technical advances in genomics and proteomics have led to an
extraordinary proliferation of data, which offers an unprecedented op-
portunity to understand how organisms function but poses significant
challenges as well. Experimental design, hypothesis testing, and concep-
tual model building all require biologists to collect, evaluate, and inte-
grate large amounts of information of many disparate kinds. There is a
need to create user-friendly tools to assist researchers in designing and
testing new hypotheses against the quickly growing, distributed knowl-
edge base and to facilitate the development of experimentally verified
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models through the accumulation of validated hypotheses stored in data-
bases designed from the ground up to support hypothesis testing.

Three kinds of conceptual and bioinformatics challenges appear in
today’s data-rich environment: (1) information retrieval and integration,
(2) knowledge representation, and (3) hypothesis testing and model build-
ing. The first and second are closely related: How can we retrieve and
express the many qualitatively different kinds of information available in
databases and the published literature in a representation that informs
experimentation? Developing common ontologies for biological objects
and processes is essential for supporting the intercommunication of di-
verse databases (Schulze-Kremer, 1998; Ashburner et al., 2000) and for
enabling the automated annotation and extraction of information from
the published literature (Andrade et al., 1999; Fleischmann et al., 1999;
Friedman et al., 2001; Stephens et al., 2001; Yakushiji et al., 2001). An on-
tology also provides the foundation for constructing higher-level rep-
resentations of biological systems (Rzhetsky et al., 2000; Peleg et al., 2002).

The third challenge is to create and verify testable conceptual repre-
sentations of the biological system. A conceptual framework for repre-
senting biological systems must accommodate the modularity and tem-
poral evolution of biological networks, as well as handle their
nonlinearity, plasticity, redundancy, and degeneracy. Conceptual models
vary from the simple Boolean networks pioneered by Kaufmann (1969,
1993), Liang et al. (1998), and Akutsu et al. (2000a, 2000b) to Bayesian
networks (Friedman et al., 2000; Hartemink et al., 2001; Pe’er et al., 2001),
as well as highly concrete (McAdams and Arkin, 1998; Judd et al., 2000)
and quantitative (Sveiczer et al., 2000) models. Incorporating disparate
kinds of information about biological systems into a common conceptual
framework remains a major stumbling block for validating ideas about
real biological networks, and current efforts focus largely on just one or
two categories of information (Rzhetsky et al., 2000; Hartemink et al., 2001;
Wessels et al., 2001). There is a need to develop a hypothesis representa-
tion language that can assist in integrating experimental information at
the logical level, as well as approaches to aggregating validated hypoth-
eses into increasingly quantitative models.

Most currently available bioinformatics tools support the analytical
tasks of the biologist. These tools are very useful and effective for certain
specific tasks, such as identifying patterns, categorizing information, and
simultaneously probing multiple data sources for similarities. Such tasks
usually comprise the early steps of the discovery process. However, syn-
thesis and evaluation of the information remain the task of the individual.
Kuchinsky and his colleagues (2002) argue that this synthesis task can be
broken down into steps: (1) keeping track of all the diverse pieces of infor-
mation collected during the database searches and other retrieval activi-
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ties, (2) organizing and using this information by formulating hypotheses
and higher level explanations, and (3) sharing the information with col-
leagues and working collaboratively with colleagues to refine hypotheses.
There is a need to develop a system to allow biologists to construct and
verify formal language hypotheses, making use of event- and process-
based description language.

Complex processes that exhibit nonlinear behavior, as biological sys-
tems do, are often more readily described by event-driven dynamics (Ho,
1989) than by differential equations. Furthermore, when biologists think
about biological systems, they typically do so in terms of biological agents,
events, and causal relationships between events. A symbolic discrete mod-
eling approach, in which the discretizations are defined by events—that
is, by any biological change for which there is experimental evidence of
changes in the state of the system—is likely to be a useful approach.

BIOLOGICAL CONSIDERATIONS

The capacity of cells to differentiate is a hallmark of eukaryotic organ-
isms. Differentiation is the acquisition of structurally and chemically dif-
ferent identities by cells over time. The capacity for self-differentiation,
which transforms a single diploid cell (the zygote) into a complex, multi-
cellular plant or animal comprising many different structural and func-
tional tissues, is rooted in asymmetries within the initial cell and has its
origins in the unequal intracellular distribution of small molecules, mac-
romolecules, and organelles. Such inhomogeneities in cell structure can
be triggered by external stimuli, such as fertilization (Green, 1993; Rossant
and Tam, 2004; Swann et al., 2004) and light stimuli (Robinson et al., 1999),
which set in motion a complex series of structural and compositional re-
organizations that in turn generate compositionally different daughter
cells, whose differences are further reinforced by differential gene expres-
sion (Kanka, 2003).

The rapid advances during the second half of the 20th century in the
understanding of how DNA functions in heredity and expresses the in-
formation it encodes fostered a markedly genocentric view of eukaryotic
development. This was further reinforced by a virtual flood of genome
sequences and gene expression data that followed technological develop-
ments in nucleic acid sequencing and monitoring of gene expression pat-
terns during the final decades of the century. Both embryonic develop-
ment and cellular differentiation were viewed as under the control of
genes, whose differential expression was orchestrated by a “developmen-
tal program.” Indeed, the notion of a developmental program has domi-
nated thinking about development for decades (Davidson et al., 1995;
Marczynski and Shapiro, 1995; Chu et al., 1998; Roberts et al., 2000).
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However, actual progress in understanding developmental processes
has occurred by studying finer levels of detail rather than attempting to
delineate an overarching developmental program. Mutations that affect
development are often in genes that code for proteins that function in
inter- and intracellular signaling and structure. Moreover, there are many
molecular mechanisms by which cells affect the spatial patterning, includ-
ing small molecules, such as the gaseous hormones nitric oxide (plants
and animals) and ethylene (plants), and intermediate-sized molecules,
such as the plant gibberellins and brassinosteroids and the animal endo-
crine and autocrine hormones.

Patterning mechanisms also include macromolecular mechanisms,
such as the intracellular transport of proteins and RNA in both plants
and animals. Examples include the translational gradients established in
early Drosophila embryogenesis by the localization of bicoid and oskar
mRNA molecules (Micklem et al., 2000) and the intercellular interactions
that underlie the subsequent development of the abdominal segmenta-
tion pattern (Immergluck et al., 1990; Ingham and Arias, 1992; Courey
and Huang, 1995). Analysis of processes such as these has led to articula-
tion of the view that all of development can be explained by local interac-
tions (Britten, 1998). Indeed, current developmental models are increas-
ingly couched in terms of cellular fate determination by signaling
between cells and by programmed cell death (Lam et al., 2001; Ribeiro et
al., 2003; Lai and Orgogozo, 2004). Morphogenetic proteins can be se-
creted signaling proteins that alter the fates of cells through cell-surface-
receptor-mediated pathways (Tabata and Takei, 2004). Receptors at the
cell surface and intracellular signaling proteins, signaling cascades (such
as MAPK cascades), and protein networks mediate the activation of genes
in response to extracellular signals (Imler and Hoffmann, 2002; Muller
and Bossinger, 2003; Schulz and Yutzey, 2004).

Epigenetic mechanisms are conceptualized as mechanisms that sta-
bly affect gene expression without altering gene structure. Initially, epi-
genetic mechanisms were equated with stable, even heritable, modifica-
tions in gene expression, commonly ones that suppress gene expression.
Early descriptions of plant paramutation (Brink, 1960), transposable ele-
ment inactivation (McClintock, 1965), and X-chromosome inactivation in
mammals (Lyon, 1961) provided the foundation for what has become an
active field of epigenetic research. Because differentiated plant cells can
regenerate into whole plants and nuclei from differentiated animal cells
can support development of enucleated eggs, DNA in most cells is not
irreversibly altered during development and differentiation. However,
the epigenetic modifications in gene expression that occur during devel-
opment are highly regular, impose important differences between male
and female gametes, and are not easily reversed experimentally
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(Wrenzycki and Niemann, 2003; Tian, 2004) although they are altered
regularly during gametogenesis and early embyronic development
(Gehring et al., 2004; Santos and Dean, 2004).

There has been important progress in understanding the diverse
mechanisms for epigenetic modifications of gene function. These mecha-
nisms include DNA methylation, which compromises the digital purity
of the Watson-Crick model of DNA by, in effect, putting “asterisks” on
certain bits in the digital code, and highly dynamic chemical modifica-
tions of the histone proteins around which DNA wraps in the chromo-
somes of multicellular organisms. The complexity of these mechanisms
and of the pathways that regulate their operation—together with the ubiq-
uity of epigenetic effects during development—indicates that overly
genecentric models of development are likely to fail.

FUTURE DIRECTIONS

The emphasis in cell biology is shifting from phenomenological de-
scriptions to predictive models that are consistent with the largest pos-
sible amount of data. Data integration, reduction, and multiscale model-
ing approaches will take center stage in dealing with the diverse data sets
emerging from molecular profiling and imaging experiments. Increas-
ingly, biologists will use these approaches to identify the important spe-
cies, interactions, and processes occurring within cells. Models of cellular
processes must explicitly account for the significant parametric and struc-
tural uncertainties inevitable at the current level of knowledge and ex-
perimental resolution. In general, special attention should be paid to the
proper selection and validation of the mathematical formalisms used to
model any given process. Advances in dynamical systems theory will be
required to deal with inevitable model heterogeneity, such as that re-
quired by the combination of stochastic descriptions of gene expression
and deterministic descriptions of signal transduction events.

At this time, scientists are far from having an adequate quantitative
description of cellular responses, even in well-studied systems such as
bacterial chemotaxis. The field must make a concerted effort to improve
the quantitative analysis of such model systems in order to achieve suc-
cesses that can be used as templates for modeling and analysis in less
well-established experimental systems. At the same time, the field must
establish new experimental systems where integrative genetic, biochemi-
cal, and cell biological experiments are possible and that can support
meaningful modeling efforts. It will be necessary to establish experimen-
tal systems that can serve as testing grounds for multiscale models that
can be used to understand how cellular functions emerge from molecu-
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lar-scale events and how cell population or tissue-level functions emerge
from cellular-scale events.

Models must span as many scales as possible, from sequence-specific
information on gene expression, to intracellular biochemistry, to cellular
responses. Large-scale integrative approaches require the creation and
funding of interacting groups of mathematicians, computer scientists, and
biologists. While models should be based on detailed analysis of specific
experimental systems—for example, particular cell types—model build-
ers should strive to make the models generalizable to other systems. For
example, it is important to analyze the evolution of cellular signaling sys-
tems in animals from worms to humans, as well as in plants. What medi-
ates the increase in the number of signaling components in particular evo-
lutionary linkages, and what are the systems-level consequences of this
increase in complexity?

Quantitative experimental analyses of intracellular fluctuations and
noise are critical for understanding cellular functions and the limits of
applicability of conventional deterministic and continuum approaches.
This type of analysis is also important for understanding the mechanisms
and functional consequences of nongenetic individuality. Analysis of cell-
to-cell variations is now possible owing to advances in imaging and single-
cell molecular profiling experiments. On the purely theoretical and com-
putational side, scientists must (1) classify dynamical systems according
to the ways in which they can tolerate intracellular and extracellular noise
and (2) understand the processes where noise can play a constructive role.

Thus, future research must emphasize the close connection between
experiments, model validation, and data integration. While this level of
integration is only possible by focusing on specific experimental systems,
the field must make an effort to systematize methodological advances so
that scientists do not have to start from scratch every time they analyze a
new cellular system.
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5

Understanding Organisms

The step in hierarchical scale from cells to organisms is huge. This
chapter largely discusses tissues, organs, and organ systems in multicel-
lular organisms made up of immense numbers of highly differentiated
cells. In some instances, as in the discussion of locomotion, the focus is
on the integrated properties of the whole organism. While much math-
ematical analysis directed at understanding organisms involves systems
that are far removed from the cellular level, there are also levels of bio-
logical organization intermediate between cells and organisms. Biofilms
formed by bacteria are one such intermediate level that has received
modeling attention (Morgenroth et al., 2004), as are still more complex
cellular aggregates such as the slug phase of the slime mold Dictyostelium
discoideum (Umeda and Inouye, 2004) and the aggegration phase of
myxobacteria (Igoshin and Oster, 2004). Analysis of systems of this
type—poised as they are between cells and organisms on the scale of
biological organization—offers a promising path toward improving
mathematical approaches to multicellular processes. However, the com-
mittee draws its main examples in this chapter from more traditional
areas of mathematical modeling, such as physiological processes.

In recent years the importance of mathematical models in the study of
physiological processes has become widely accepted. There are many in-
stances of how experimentalists and theoreticians, working together, have
made discoveries that would be difficult, if not impossible, for each work-
ing independently. One such discovery involves the phenomenon of elec-
trical excitability and the propagation of action potentials in cardiac and
neural tissue. How oscillations in the cell cycle lead to regular cell divi-
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sions; how intercellular calcium waves coordinate cellular responses over
large areas; how tumors grow and respond to chemotherapy; and how
the HIV virus is produced and cleared within cells: all are areas where
mathematical models have played an important role.

The need for mathematical models has never been greater. Much of
the biological investigation of the past can be described as a compilation
and categorization of the list of parts, whether as the delineation of ge-
nomic sequences, genes, proteins, or species. The past decade has seen an
explosion in probing genetic or cellular defects that alter properties and
behaviors at the tissue or organ level, thereby identifying the root basis
for many diseases. As examples, we know the mutation to a chloride ion
channel that results in cystic fibrosis and the mutations to potassium chan-
nels that lead to long QT syndrome (an abnormality of the heart’s electri-
cal system). There have also been many striking advances in imaging and
measurement of function, some due to mathematical advances that pro-
vide insight into the level and extent of functional degradation or guide
clinical intervention. For example, the ability to interpret electrocardio-
grams has led to spectacular advances in the reliability of implantable
pacemakers and defibrillators (Kenknight et al., 1996). Missing is the abil-
ity to integrate how the various components of organs work together to
achieve dynamic function, and how change of specific components or
combinations thereof impact function. Thus, the challenge of systems
physiology is to provide an understanding of how the interactions of bio-
logical entities across spatial and temporal scales lead to observable be-
havior and function.

Two important organizing principles need emphasis. First, an inte-
grated understanding of systems requires mathematics and the develop-
ment of theory, supplemented by simulations. One of the important les-
sons of the past is that there are behaviors and phenomena that are the
consequences of interactions of several or many individual components
that cannot occur with the components uncoupled, and the principles gov-
erning these emergent behaviors require theory for their full explanation.
Secondly, theory cannot be relevant if it is not driven and inspired by
experimental data. The committee illustrates these with some examples
where systems physiology has great promise.

CARDIAC PHYSIOLOGY

Failure of the cardiac system remains the leading cause of death in the
Western world. The cardiac cycle consists of two primary events: (1) a
contractile, or mechanical, event, controlled by (2) an electrical event, the
cardiac action potential. Failure of either of these can lead to death. Either
cardiomyopathies, in which the cardiac muscle does not provide enough
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force or blood volume (decreased cardiac output), or a disruption of the
electrical signal in an otherwise mechanically adequate heart may be the
primary dysfunction. Of course, these disruptions are rarely completely
independent, as diseased and damaged tissue often results in an increased
likelihood of electrical malfunction.

One challenge presented by the cardiac system is to understand the
physiological mechanisms underlying the electrical signal, so as to under-
stand the mechanisms of the variety of arrhythmias and to learn how to
control or prevent these arrhythmias. A substantial amount of ongoing
research is aimed at understanding the dynamics of cardiac cells using
mathematical and computational models. There is a long history to this
direction of investigation, which has its origins with the Hodgkin-Huxley
equations. The Hodgkin-Huxley theory was extended to cardiac cells by
Noble, Beeler-Reuter, and others. More recently, detailed cellular ionic
models have been developed by, for instance, Luo and Rudy (1994), Jafri
et al. (1998), and Puglisi and Bers (2001).

In spite of the remarkable success of these models, they all fall short of
providing an understanding of many important arrhythmias. This short-
coming is illustrated by the history of antiarrhythmic drugs. Many of the
so-called antiarrhythmic drugs are known to be ion channel blockers.
When they were first discovered, it was thought that arrhythmias were
caused by overactive ion channels and if these were blocked, then the
arrhythmias could be prevented. Indeed, tests on single cells and small
patches of tissue verified this conjecture. However, when drugs were
tested in the CAST and SWORD clinical trials (CAST Investigators, 1989;
Waldo et al., 1996), it was discovered that many of these drugs were actu-
ally proarrhythmic. The fundamental difficulty was that an understand-
ing of how single cells or small patches of tissue behave or respond to
drugs does not answer the question of how the entire spatiotemporal
system will behave. (While some arrhythmias are the result of cellular
automaticity and ectopic foci, which occur when a cell or small collection
of cells oscillates without external stimulus and thereby takes over as the
pacemaker of the heart, the most significant life-threatening arrhythmias
are maintained because they are spatiotemporal patterns and cannot oc-
cur in single cells or small patches of tissue.) In the case of the CAST and
SWORD studies, the lack of a suitable spatiotemporal model led people
astray. They relied instead on their best guess, but their best guess was
wrong. It is now recognized that almost all drugs that were previously
classified as antiarrhythmic are actually proarrhythmic. It is also now
recognized that the response of a single cell to ion-channel blockers does
not adequately predict the response at the spatiotemporal level.

Thus, the challenge is to develop mechanistic, functionally inte-
grated, multiscale mathematical models of the heart from molecular to
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cellular and whole-organ scales, which would lead to a deeper under-
standing of the excitation and contraction of the heart. Research needs to
move from understanding atrial and ventricular electrophysiology based
on models of the biophysics of single-ion channels to predicting the elec-
trocardiogram recorded at the body surface. (Of course we will ultimately
want to use this understanding in an inverse way: interpreting electro-
cardiogram signals at the surface as indicators of the functioning of car-
diac subsystems.) An overarching theme will be how mathematical mod-
els can help elucidate mechanisms, improve diagnoses, and identify
therapeutic targets for cardiac arrhythmias. Simultaneously, there is a
need to address the mechanical function of the heart using models of the
biophysics and biochemistry of molecular motors to predict the three-
dimensional mechanical performance of the whole heart (Vetter and
McCulloch, 1998). Related questions are how mathematical models can
help improve the diagnosis and treatment of cardiac mechanical dysfunc-
tion during disease, especially congestive heart failure, and how to eluci-
date the mechanisms by which mechanical factors can regulate cardiac
remodeling in vivo.

Integrative computational modeling of the heart has a long history
dating to Laplace. Laplace’s law provides an explanation for the fact that
a dilated heart must create a larger wall tension in order to create the
normal pressure, giving a theoretical basis for the surgical procedure of
ventricular remodeling. The first cardiac myocyte ionic models were pub-
lished in Noble (1962), followed by Moe’s cellular automata model of atrial
fibrillation in 1964 (Moe et al., 1964). Crossbridge and continuum models
of ventricular mechanics started to appear in 1970. Today, an established
multidisciplinary community of mathematicians, bioengineers, biophysi-
cists, and physiologists is working on the experimental, theoretical, and
computational challenges associated with formulating, implementing, and
validating predictive models that integrate functionally across interacting
cellular processes such as electrical excitation, mechanical contraction, and
energy metabolism, and structurally across scales of biological organiza-
tion from molecule to organ and system (McCulloch et al., 1998). Many in
this community have advocated ambitious multicenter programs under
banners such as the Cardiome Project, headed by A.D. McCulloch at the
University of California at San Diego. Several large sponsored collabora-
tions are under way (McCulloch et al., 1998; McCulloch and Huber, 2002).

However, in spite of the growing sophistication of these integrative
modeling efforts, the investigators are the first to point out the manifest
weaknesses and shortcomings. While excellent progress has been made in
applying cellular system models of action potentials or contractile pro-
cesses to three-dimensional continuum models of impulse propagation or
ventricular pumping, multiscale electromechanical models are in their
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infancy and will require further development before they can provide the
insight that is needed.

Another frontier is the development of models of the metabolic and
neurohormonal (cell signaling) mechanisms that regulate excitation and
contraction and their interactions (Saucerman and McCulloch, 2004). Fi-
nally, the application of integrative models to understanding the patho-
genesis of genetic and acquired heart diseases and identifying new thera-
peutic targets is an emerging and timely field (Sussman et al., 2002).

CIRCULATORY PHYSIOLOGY

The function of the systemic circulatory system is to distribute and
remove materials and heat as needed throughout the body. Transport is
achieved by convection in the blood and diffusive exchange with sur-
rounding tissue (Pittman, 2000). Because diffusion is effective only over
short distances, blood must be brought close to every point in every tis-
sue. To make this possible, the peripheral circulation consists of a highly
branched system of blood vessels containing more than 109 segments
ranging in diameter from about 1 cm down to a few microns. The set of
vessels of diameter about 100 microns or less is referred to as the micro-
circulation.

A remarkable feature of the systemic circulatory system is its ability
to adjust to short- and long-term changes in local functional requirements.
This is achieved by a combination of central and local mechanisms. Short-
term local control of blood flow is accomplished when vessels change their
diameters by contracting and relaxing vascular smooth muscle. Longer-
term changes in needs are met by structural changes, including changes
in wall thickness and diameter and the addition of new vessels (angiogen-
esis). Many of these changes are driven primarily by responses to local
stimuli, without central control. The peripheral circulation can therefore
be considered as a highly distributed adaptive system. Understanding this
system has important implications both for normal physiological pro-
cesses and for many diseases, including heart disease, hypertension, and
cancer.

Important areas of research are blood flow and mass transport in the
microcirculation; short-term regulation of blood flow, including vascular
smooth-muscle behavior; and structural adaptation of blood vessels, in-
cluding angiogenesis. Mathematical and computational approaches can
make important contributions in all of these areas. Continuum and
multiphase models can be applied to study blood flow. Simulations of
mass and heat transport also typically require solution of nonlinear par-
tial differential equations. Consideration of network properties is also
critical to understanding short- and long-term control of blood flow (Segal,
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2000; Secomb and Pries, 2002). The network can be regarded as a dynamic
system in which the properties of each segment (diameter, etc.) evolve
with time (Segal, 2000; Ursino, 2003; Zakrzewicz et al., 2002). Simulations
of angiogenesis can use a variety of approaches, including deterministic
and stochastic models and cellular automata.

RESPIRATORY PHYSIOLOGY

As with many organ-level pathologies, the past decade has seen an
explosion in probing lung pathology from the bottom up (e.g., genetic or
cellular defects or manipulations initiating the processes that alter airway
and tissue properties) as well as from the top down (e.g., advances in
imaging and function measurements that provide insight on the level and
extent of functional degradation). However, the chasm that remains be-
tween the two approaches must be bridged in a manner that can more
effectively guide therapeutic targets and assessment. Past and even cur-
rent experimental and modeling research focuses either on a specific level
of lung structure—for example, on a single airway, the airway wall, tissue
rheology, airway smooth muscle, or even airway smooth muscle and al-
veolar cell—or on function at a gross level—for example, whole-lung me-
chanical properties and indices of ventilation distribution. What is miss-
ing is the capacity to integrate how all the components in the lung work
together to achieve dynamic function and how degradation in specific
components or combinations of components might impact function. Ex-
amples of lung pathologies in need of a more comprehensive understand-
ing of how integrated structures lead to function include asthma, adult
respiratory distress syndrome, and emphysema.

Computational modeling promises a new era in the fundamental un-
derstanding of how lung morphometry and biomechanical/biomaterial
properties impact lung function. With continuous improvement in imag-
ing modalities, it is becoming increasingly possible to establish precise
physical locations and degrees of structural or functional defects in the
lung during disease. Such data will provide a foundation for addressing
how explicit defects of biological components, processes, and structure at
specific anatomic locations alter function. Computational power now per-
mits the development of models that are closer anatomic replicas of a real
lung, while incorporating the fundamental biophysical properties and re-
lations for each component of each airway. Rational and efficient disease
management could be enhanced by understanding or predicting how al-
terations in the individual components of lung structure and properties
impact the emergent lung function.

A holy grail is a so-called in silico lung, which would reflect a person-
alized condition and enable simulated treatments to be performed and
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evaluated. Such a virtual lung would lead to the generation or rejection of
specific treatment hypotheses, in turn leading to more scientific and fi-
nancially cost-effective experiments or technology development. While a
multiscale and personalized modeling approach has emerged for other
physiological systems (e.g., cardiovascular), it remains in its infancy for
the lung.

INFORMATION PROCESSING

A system physiology approach is also needed for information pro-
cessing in the visual system. The traditional feedforward model of the
visual system invokes a sequence of processing stages, beginning with the
relay of retinal input to neurons in the primary visual cortex (V1) via the
lateral geniculate nucleus (LGN) and subsequent higher-order processing
through a hierarchy of cortical areas. According to this model, neurons at
each successive stage process inputs from increasingly larger regions of
space and code for increasingly more complex aspects of visual stimuli.
The selectivity of a neuron to a given stimulus parameter (e.g., orienta-
tion, color, depth) is assumed to result from the ordered convergence of
afferents from the lower stages. Although feedforward models can per-
form a surprising number of object-recognition tasks in some simple envi-
ronments, they perform badly in many situations that are simple for hu-
man vision—for example, where an object might be partially masked or
occluded by other objects. It has become clear that more complex forms of
visual information processing require global-to-local interactions, both
within a given stage and between different stages of the visual hierarchy.
Long-range horizontal connections provide an anatomical substrate for
the former, whereas feedforward and feedback connections provide a sub-
strate for the latter. One of the major outstanding theoretical challenges is
to bridge the gap between the systems physiology of vision, characterized
by spatiotemporal dynamics at multiple scales (synapses, neurons, net-
works), and the computational/information theoretic aspects of vision
(neural code, statistics of natural scenes, redundancy) (Barlow, 1961;
Laughlin, 1981; Atick et al., 1992).

In a similar way, the human auditory system from the inner ear to
the auditory cortex is a complex multilevel pathway of sound informa-
tion processing (Dallos et al., 1990). One of the early stages of sound pro-
cessing occurs in the cochlea, where the vibration pattern of the basilar
membrane encodes the acoustic characteristics of incoming sound sig-
nals. Though well-known partial differential equations in classical me-
chanics provide a solid foundation for describing these mechanical ac-
tivities, additional nonlinearities and active behaviors must be modeled
to capture nonlinear responses such as tonal suppressions and the ob-
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served frequency selectivity. The next level of information processing
occurs in as many as 30,000 nerve fibers connecting the inner ear to the
brain. Nonlinearities are associated with peripheral auditory neurons
when the hair cell converts sound signals from mechanical to neural rep-
resentation. It is now well known that outer hair cells of the cochlea play
an active role in increasing the sensitivity and dynamic range of the ear.
In addition, the frequency distribution of sound is maintained by the
wave patterns on the basilar membrane and is preserved along the fibers,
resulting in an organization of frequency responses in the auditory cor-
tex of the brain whereby different tone frequencies are transmitted sepa-
rately along different parts of the structure. An additional challenge re-
garding processing in the auditory system is to account for the extremely
fast temporal resolution of hearing, which is at the timescale of microsec-
onds rather than the typical millisecond timescale of individual neurons.

Although mathematical models exist for many levels of visual and
auditory processing, a better understanding of the connections within the
systems will depend on progress in physiological experiments as well as
theoretical advances to connect these individual levels. Moreover, many
of the neural models take the form of integro-differential equations, in
which the interaction kernel represents the spatial distribution of synaptic
weights. Such equations are much less well understood than the more
familiar partial differential equations of reaction diffusion systems.

ENDOCRINE PHYSIOLOGY

Mathematical modeling has led to an improved understanding of sev-
eral important endocrine processes (Bertram and Sherman, 2004;
Kukkonen et al., 2001; Mosekilde et al., 2001). However, there are numer-
ous areas of endocrine physiology and associated pathologies that are in
need of a more integrated approach. Consider, for instance, diabetes. It is
well appreciated within the diabetes research community that diabetes is
a multifactorial disease that involves the interaction over disparate spatial
scales (from genes to cells to organs to the whole body) and timescales
(from milliseconds to decades) (Porksen et al., 1997; Sedaghat et al., 2002;
Smolen et al., 2001; Topp et al., 2000). In addition, genetic, metabolic, and
ionic events all have to be integrated to achieve a workable understand-
ing of normal and pathological regulation (Bergmann, 1989; Cobelli et al.,
1998; Tornheim, 1997).

Some diabetes-related questions that could be explored through a sys-
tem physiology approach include these: How is weight regulated? Is there
such a thing as a set point for weight? Why is it easier to gain weight than
to lose it? Why is insulin resistance associated with inflammation, hyper-
tension, and a high LDL/HDL cholesterol ratio? How do insulin resis-
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tance and beta-cell failure interact to produce a global failure of regula-
tion? Can we go beyond descriptive diagrams of hormone/peptide inter-
action networks to predictive models? How do ionic and metabolic oscil-
lations articulate to produce pulsatile insulin secretion? How is the
renin-angiotensin system regulated genetically, and what are the genetic
factors underlying high blood pressure? These questions invite math-
ematical modeling and simulations, some of which are currently taking
place.

MORPHOGENESIS AND PATTERN FORMATION

The combination of developmental genetics with rapidly advancing
imaging and transcriptional profiling technologies promises a golden age
for the modeling and computational analysis of developing systems. The
main efforts for modeling and computational analysis can be subdivided
into three groups: (1) analysis and synthesis of genetic and imaging data,
with the main goal of formulating realistic models, (2) formulation of
models that reflect the complexity of developing tissues, and (3) analysis
of these models and their testing in direct genetic experiments.

Models of developmental pattern formation are necessarily spatially
distributed, dynamic, and multivariable. All of these aspects can be now
explored experimentally, opening the door to a mutually beneficial inter-
play between modelers and experimentalists. The expression of tens to
thousands of genes in any given context can be visualized by multicolor
in situ hybridizations; antibody stainings; spatially resolved, quantitative,
real-time polymerase chain reactions (PCRs); or microarray experiments
(Tomancak et al., 2002; Fraser and Marcotte, 2004). Few of the current
techniques for gene-expression analysis in development are real-time, so
the multivariable dynamics of a system have to be pieced together from a
number of still shots taken from different embryos. Data normalization
and image processing techniques, such as morphing, can be used to con-
struct the spatiotemporal atlases of gene expression or pathway activity
(Pereanu and Hartenstein, 2004). Recently, this approach was successfully
used to develop a comprehensive multivariable and dynamic picture of
gap gene expression in fruit fly embryogenesis (Kozlov et al., 2002; Jaeger
et al., 2004). The spatiotemporal information about gene expression or
pathway activity can be integrated, again through morphing, with the
results of real-time microscopic analysis of the morphological changes in
the developing system (Huisken et al., 2004; Kosman et al., 2004).

Atlases of gene expression and pathway activity directly lead to mod-
els. At the simplest level, correlation between expression patterns of mul-
tiple genes can be used to formulate Boolean or Bayesian models of gene
regulation. Systematic methods for formulating such models from data
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must be developed, along with the computational techniques for their
analysis, with an emphasis on spatially distributed systems (Friedman,
2004; Nachman et al., 2004). At the next level of complexity, multivariable
spatial data can be used to fit parameters in the continuous-time dynamic
models—for example, in the form of reaction-diffusion equations. This
requires robust numerical methods for parameter estimation based on
spatially resolved and dynamic data. Reinitz and co-workers have used
stochastic optimization to fit parameters in the reaction-diffusion model
of gene regulation in the early Drosophila embryo (Jaeger et al., 2004). The
estimated parameters can be used to interpret the dynamics of genetic
interactions in development.

Gene expression patterns in developing tissues can be very fine-
grained, with the characteristic domains of gene expression spanning only
a few cell diameters. Such patterns cannot be captured with the continuum
models traditionally used to model developmental patterning (Murray,
1993). Models of developing tissues must account for cell-cell interactions
by both localized and spreading signals and for the dynamics of gene
expression mediated by extracellular signals (Monk, 2000; Shvartsman et
al., 2002; Eldar et al., 2003). An important modeling direction involves
incorporating cell-level models into the descriptions of multicellular sys-
tems and tissues (Pribyl et al., 2003).

A major challenge for the development of truly predictive pattern for-
mation models lies in choosing the appropriate modeling formalism for
describing the regulatory patterns of gene expression. Indeed, the expres-
sion of a single gene can be a highly complex function of extracellular
conditions (Yuh et al., 1998; Davidson, 2001; Setty et al., 2003). Despite
this complexity, it is worthwhile to explore the utility of simple logic and
switchlike models for modeling gene expression in developing tissues
(Thieffry and Sanchez, 2003). The most productive approach to modeling
is likely to be hybrid, with threshold functions that couple extracellular
signals to gene expression in individual cells. Numerical techniques for
the analysis of such models are being developed (Ghosh and Tomlin,
2001).

Analysis of robustness is crucial in the evaluation of mathematical
and computational models of development (von Dassow et al., 2000; Eldar
et al., 2004). Indeed, developing systems can frequently tolerate gene dose
reductions due to heterozygocity, so they are robust to twofold changes
in the developmental parameters. This experimental observation can be
used to rule out models and mechanisms that require fine-tuning of pa-
rameters. In fact, the robustness that is so common in biological systems—
and which is seen as a relative insensitivity to variations in parameters—
suggests that a model that requires fine-tuning may be overlooking a layer
of regulation in the system. In connection with this, modeling standards
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for robustness analysis must be developed. Current approaches are based
on random sampling of system parameters (von Dassow et al., 2000; Meir
et al., 2002; Eldar et al., 2003). More sophisticated methods for parameter
sampling and statistical verification of results of random parameter sam-
pling must be developed.

The amazing robustness of developing systems, e.g., the stability of
the morphologies of eggshells or wings, is contrasted with large inter-
species variations. Since the time of Turing, the nonlinear instabilities
induced by variations of system parameters were considered one of the
mechanisms for generating increasingly complex patterns and morpholo-
gies (Turing, 1952; Meinhardt and Gierer, 2000). While true in physico-
chemical systems, this hypothesis still awaits its experimental verifica-
tion in developing systems. This verification requires the identification
of appropriate experiments where system parameters can be varied and
the effects of these variations on gene expression patterns and the emerg-
ing morphologies can be examined. Model organisms, such as fruit flies
and worms, can be used to generate genetic backgrounds with controlled
levels of gene expression. The design of such genetic experiments can be
model-based in the sense that nonlinear analysis of the model can sug-
gest the most critical genetic perturbations (Shvartsman et al., 2002;
Nakamura and Matsuno, 2003). In addition, analysis of the results of ge-
netic experiments (e.g., the effect of overexpressing a gene on the shape
of a wing) can be accelerated by the development of new image analysis
and pattern recognition tools for rapid phenotyping. For instance, when
studying wing development, tools for the rapid detection of morphologi-
cal changes in a large number of fruit fly cells, embryos, or wings would
be desirable (Myasnikova et al., 2001; Houle et al., 2003; Kiger et al., 2003).

LOCOMOTION

An important area of mathematical analysis at both the cellular and
organismal level is the study of locomotion. Much productive research
has been carried out on locomotion at many scales, ranging from the me-
chanical repositioning of subcellular organelles to the gaits of running
animals. The subject is too large to review comprehensively in this report.
Instead, the committee simply cites examples that illustrate the breadth of
important problems on which progress has been made.

At the subcellular level, molecular motors based on actin and tubulin
polymerization are of central importance in many basic cellular processes,
including chromosome segregation during cell division, cell motility,
muscle contraction, and intracellular transport of organelles (for a review,
see Mogilner and Oster, 2003). Although bacteria themselves lack systems
based on actin and tubulin, some pathogens have evolved systems for
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utilizing the molecular motors of their hosts for propulsion. A dramatic
example is Lysteria monocytogenes: The relatively simple mechanical sys-
tem through which Lysteria moves when in contact with mammalian cells
lends itself well to both detailed experimental characterization and math-
ematical modeling (Alberts and Odell, 2004). Rotary motors, exemplified
by those that drive flagellar motion in E. coli, have also received extensive
attention (Coombs et al., 2002; for a review, see Oster and Wang, 2003).

At an organismal level, mathematical analysis has illuminated basic
mechanisms of insect flight (Combes and Daniel, 2003; Miller and Peskin,
2005). A distinctive characteristic of these studies—and those of locomo-
tion in general—has been the close interplay between experiment and
theory. This interplay has long been evident even in the analysis of loco-
motion at larger spatial scales. Examples include the swimming motions
of lampreys (Cohen et al., 1992; Lighthill, 1995) and the gaits of quadru-
peds (Buono and Golubitsky, 2001). Indeed, most biomechanical processes
would be difficult to study effectively without a close connection between
theory and experiment.

CANCER

While cancer can be studied at the genetic and cellular levels, it is not
until it is understood at the tumor level that its intrinsic cancerous behav-
ior can be recognized. It follows that the outcome of chemotherapy cannot
be understood without understanding the effects of spatial organization
and intercellular communication on the dynamics of tumor development.
The dynamic interplay of several biological factors determines the re-
sponse of a cell to therapy and, ultimately, the outcome of chemotherapy.
The key issues are (1) delivery of therapy to target tumor cells, (2) mecha-
nisms of drug action, (3) growth and differentiation of cell populations,
and (4) development of resistance.

Delivery of Therapy to Target Tumor Cells

Over 80 percent of human cancers are solid tumors. Presentation of a
drug to cells in a solid tumor and the accumulation and retention of a
drug in tumor cells depend on how the drug is delivered, the ability of the
drug to diffuse through the interstices, and the binding of the drug to
intracellular macromolecules. Some of these factors also depend on time
and drug concentration. For example, the interstices, which determine the
porosity and therefore the diffusion coefficient, might be expanded as a
result of drug-induced apoptosis. Mathematical models depicting how
these processes affect drug delivery to tumor cells could suggest the treat-
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ment regimens that will result in the most effective drug concentration
and residence time in the target sites.

Mechanisms of Drug Action

Most anticancer drugs act on specific molecular targets, often mol-
ecules that are involved in the regulation of cell growth, cell differentia-
tion, and cell death. Mathematical models to link the effective drug con-
centration in the tumor cells with the molecular targets, in a time- and
concentration-dependent manner, are needed to improve the understand-
ing of drug-target interaction (see Panetta et al., 2000; McDougall et al.,
2002; http://calvino.polito.it/~biomat/).

Growth and Differentiation of Cell Populations

Efforts here involve the modeling of growth and differentiation of
laboratory cell populations, of populations of normal cells, and of cells in
tumors. Precise mathematical models exist for the processes of
haemopoiesis (blood cell production) and self-renewal of colon epithe-
lium. The mathematical tools used include stochastic processes (which
are useful when describing small colonies or early stages of cancer), par-
ticularly branching processes, nonlinear ordinary differential equations
(which are useful for modeling feedbacks of cell-production systems), and
integral equations and partial differential equations (which are useful for
modeling heterogeneous populations). The challenges involve integrat-
ing newly described genetic and molecular mechanisms into the models
of proliferation, mathematically modeling the geometric growth of tumors
in various phases (prevascular, vascular, anoxic), and modeling the het-
erogeneity of tumor populations. The mathematical tools needed include
partial differential equations with free boundary conditions, bifurcation
in systems of many nonlinear ordinary differential equations, and branch-
ing processes with infinite-type space.

Development of Resistance

Cancer cells are genetically unstable and can acquire genetic and phe-
notypic changes that permit them to escape cytotoxic insults. Develop-
ment of drug resistance is common, and it is a major problem in cancer
chemotherapy. Development of drug resistance is often a function of the
frequency, intensity, and duration of drug exposure, as well as the chro-
nological age of the cells. These biological parameters can be described in
mathematical terms.

The modeling and optimization of chemotherapy protocols is an area
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of potentially great practical importance. Classical models involve popu-
lations of normal and cancer cells described as systems of ordinary differ-
ential equations with control terms representing treatment intervention.
The most common classical approach involves defining a performance
index that summarizes the efficiency of the therapy and the damage done
to normal (noncancer) cells and using methods of control theory to find
the best value of the index. These models had a good deal of appeal in the
early days of chemotherapy, when the complexity of tumor cell popula-
tions was not entirely appreciated. There also exist models that take into
account emerging resistance (like the Coldman-Goldie clonal resistance
model) and heterogeneity (like gene amplification), but they are based on
unrealistic biological hypotheses. Challenges for the field involve the de-
velopment of more realistic models of drug action and cell proliferation
and heterogeneity as well as new methods for parameter estimation.

IN VIVO DYNAMICS OF THE HIV-1 INFECTION

Mathematical models of HIV infection and treatment have provided
quantitative insights into the main biological processes that underlie HIV
pathogenesis and helped establish the treatment of patients with combi-
nation therapy.1  This in turn has changed HIV from a fatal disease to a
treatable one. The models successfully describe the changes in viral load
in patients under therapy and have yielded estimates of how rapidly HIV
is produced and cleared in vivo, how long HIV-infected cells survive
while producing HIV, and how fast HIV mutates and evolves drug resis-
tance. They have also provided clues to the T-cell depletion that charac-
terizes AIDS. The models also allow the rapid screening of antiviral drug
candidates for potency in vivo, hastening the introduction of new anti-
retroviral therapies.

HIV on average takes about 10 years to advance from initial infection
to immune dysfunction (or AIDS). During this period the amount of virus
measured in a person’s blood hardly changes. Because of this slow pro-
gression and the unchanging level of virus, it was initially thought that
the infection was slow. It was unclear if treating the disease early, when
symptoms were not apparent, was worthwhile. Recognizing that constant
levels of virus meant that the rates of viral production and clearance were
in balance but not necessarily slow, Alan Perelson and David Ho (Perelson
et al., 1996) used experimental drug therapy to perturb the viral steady
state. Mathematically modeling the response to this perturbation using a
system of ordinary differential equations that kept track of the concentra-

1The material in this section was generously contributed by Alan Perelson.
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tions of infected cells and HIV and fitting the experimental data to the
model revealed a plethora of new features about HIV infection. After
therapy was initiated, levels of HIV RNA (a surrogate for virus) fell 10- to
100-fold in the first week or two of therapy. This suggested that HIV has a
half-life of 1 or 2 days, so to maintain the pretherapy constant level of
virus requires enormous virus production—in fact the amount of virus in
the body must double every 1 or 2 days. Detailed analysis showed that
this viral decay was governed by two processes: the clearance of free vi-
rus particles and the loss of productively infected cells. From this rapid
clearance of virus one could compute that at steady state, ~1010 virions are
produced daily and, given the mutation rate of HIV, that each single and
most double mutations of the HIV genome are produced daily. Thus, ef-
fective drug therapy would require drug combinations that can sustain at
least three mutations before resistance arises, and this engendered the idea
of triple combination therapy. Other analyses showed that the slope of
viral decay was proportional to the drug combination’s antiviral efficacy,
providing a means of comparing therapies.

Following the rapid 1-2 week, first-phase loss, the rate of HIV RNA
decline slows. Models of this second phase of decline, when fitted to the
kinetic data, suggested that a small fraction of infected cells might live for
a period of weeks while infected. Following on the success of these joint
modeling and experimental efforts, many similar studies were undertaken
that revealed a fourth, much longer timescale, between 6 and 44 months,
for the decay of latently infected cells. Latently infected cells, which har-
bor the HIV genome but do not produce virus, can hide from the immune
system and reignite infection when the cells become stimulated into pro-
liferation. Clearing latently infected cells is one of the last remaining ob-
stacles to eradicating HIV from the body.

The modeling of the HIV virus is but one example of the extensive
contributions of the mathematical sciences to immunology and epidemi-
ology. Many exciting opportunities remain.

FUTURE DIRECTIONS

The examples described above briefly illustrate the broad challenge
and opportunities for mathematical modeling and simulation in system
physiology. The use of mathematical models to describe processes in sys-
tem physiology will improve our understanding of the dynamic interplay
between those processes and ultimately aid in the translation of basic sci-
ence findings to clinical application. At the same time, these mathematical
investigations will undoubtedly lead to new mathematical problems and
to new mathematical and computational methods with application in
many other areas of science.
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The multiscale issues of modeling at the organismal level will con-
tinue to pose what is perhaps the ultimate challenge in mathematical
applications to biology. In organisms, there are often direct, immediate
consequences of molecular processes: Cause-and-effect cascades explode
from a scale of angstroms and picoseconds to one of meters and millisec-
onds, seconds, hours, or years. When integrating knowledge of organ-
isms into the analysis of populations, which are the focus of the next
chapter, it will often be possible to treat the individual organisms as ho-
mogeneous entities. However, knowledge of molecular and cellular pro-
cesses will need to be taken into direct account in many models of
organismal function. This goal will pose continuing, monumental chal-
lenges for scientists and mathematicians alike.

REFERENCES

Alberts, J.B., and G.M. Odell. 2004. In silico reconstitution of Listeria propulsion exhibits
nano-saltation. PLoS Biol. 2(12): e412.

Atick, J.J., Z. Li, and A.N. Redlich. 1992. Understanding retinal color coding from first prin-
ciples. Neural Comput. 4: 559-572.

Barlow, H.B. 1961. Possible principles underlying the transformation of sensory messages.
Pp. 217-234 in Sensory Communication. W. Rosenblith, ed. Cambridge, Mass.: MIT Press.

Bergman, R.N. 1989. Lilly lecture 1989: Toward physiological understanding of glucose tol-
erance: Minimal-model approach. Diabetes 38(12): 1512-1527.

Bertram, R., and A. Sherman. 2004. A calcium-based phantom bursting model for pancreatic
islets. Bull. Math. Biol. 66(5): 1313-1344.

Buono, P.L., and M. Golubitsky. 2001. Models of central pattern generators for quadruped
locomotion. I. Primary gaits. J. Math. Biol. 42(4): 291-326.

CAST Investigators. 1989. Preliminary report: Effect of encainide and flecainide on mortality
in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J.
Med. 321: 407-412.

Cobelli, C., F. Bettini, A. Caumo, and M.J. Quon. 1998. Overestimation of minimal model
glucose effectiveness in presence of insulin response is due to undermodeling. Am. J.
Physiol. 275(6 Pt 1): E1031- E1036.

Cohen, A.H., G.B. Ermentrout, T. Kiemel, N. Kopell, K.A. Sigvardt, and T.L. Williams. 1992.
Modelling of intersegmental coordination in the lamprey central pattern generator for
locomotion. Trends Neurosci. 15(11): 434-438.

Combes, S.A., and T.L. Daniel. 2003. Flexural stiffness in insect wings. II. Spatial distribution
and dynamic wing bending. J. Exp. Biol. 206(Pt 17): 2989-2997.

Coombs, D., G. Huber, J.O. Kessler, and R.E. Goldstein. 2002. Periodic chirality transforma-
tions propagating on bacterial flagella. Phys. Rev. Lett. 89(11): 118102.

Davidson, E.H. 2001. Genomic Regulatory System. San Diego, Calif.: Academic Press.
Dallos, P., C.D. Geisler, J.W. Matthews, M.A. Ruggero, and C.R. Steele, eds. 1990. The Me-

chanics and Biophysics of Hearing. Lecture Notes in Biomathematics 87. Heidelberg:
Springer-Verlag.

Eldar, A., D. Rosin, B.Z. Shilo, and N. Barkai. 2003. Self-enhanced ligand degradation under-
lies robustness of morphogen gradients. Dev. Cell 5(4): 635-646.

Eldar, A., B.Z. Shilo, and N. Barkai. 2004. Elucidating mechanisms underlying robustness of
morphogen gradients. Curr. Opin. Genet. Dev. 14(4): 435-439.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


96 MATHEMATICS AND 21ST CENTURY BIOLOGY

Fraser, A.G., and E.M. Marcotte. 2004. Development through the eyes of functional genomics.
Curr. Opin. Genet. Dev. 14(4): 328-335.

Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models. Science
303(5659): 799-805.

Ghosh, R., and C. Tomlin. 2001. Lateral inhibition through delta-notch signaling: A piece-
wise affine hybrid model. Pp. 232-246 in Hybrid Systems: Computation and Control, Lec-
ture Notes in Computer Science 2034. M.D. Di Benedetto and A.L. Sangiovanni-
Vincentelli, eds. New York, N.Y.: Springer-Verlag.

Houle, D., J. Mezey, P. Galpern, and A. Carter. 2003. Automated measurement of Droso-
phila wings. BMC Evol. Biol. 3(1): 25.

Huisken, J., J. Swoger, F. Del Bene, J. Wittbrodt, and E.H. Stelzer. 2004. Optical sectioning
deep inside live embryos by selective plane illumination microscopy. Science 305(5686):
1007-1009.

Igoshin, O.A., and Oster G. 2004. Rippling of myxobacteria. Math. Biosci. 188: 221-233.
Jaeger, J., S. Surkova, M. Blagov, H. Janssens, D. Kosman, K.N. Kozlov, Manu, E.

Myasnikova, C.E. Vanario-Alonso, M. Samsonova, D.H. Sharp, and J. Reinitz. 2004.
Dynamic control of positional information in the early Drosophila embryo. Nature
430(6997): 368-371.

Jafri, M.S., J.J. Rice, and R.L. Winslow. 1998. Cardiac calcium dynamics: The roles of
ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 74:
1149-1168.

Kenknight, B., B. Jones, A. Thomas, and D. Lang. 1996. Technological advances in implant-
able cardioverter-defibrillators before the year 2000 and beyond. Am. J. Cardiol. 78: 108.

Kiger, A., B. Baum, S. Jones, M.R. Jones, A. Coulson, C. Echeverri, and N. Perrimon. 2003. A
functional genomic analysis of cell morphology using RNA interference. J. Biol. 2(4): 27.

Kosman, D., C.M. Mizutani, D. Lemons, W.G. Cox, W. McGinnis, and E. Bier. 2004. Multi-
plex detection of RNA expression in Drosophila embryos. Science 305(5685): 846.

Kozlov, K., E. Myasnikova, A. Pisarev, M. Samsonova, and J. Reinitz. 2002. A method for
two-dimensional registration and construction of the two-dimensional atlas of gene
expression patterns in situ. In Silico Biol. 2(2): 125-141.

Kukkonen, J.P., J. Nasman, and A.E. Akerman. 2001. Modelling of promiscuous receptor-
Gi/Gs-protein coupling and effector response. Trends Pharmacol. Sci. 22(12): 616-622.

Laughlin, S.B. 1981. A simple coding procedure enhances a neuron’s information capacity.
Z. Naturforsch. 36c: 910-912.

Lighthill, J. 1995. The role of the lateral line in active drag reduction by clupeoid fishes.
Symp. Soc. Exp. Biol. 49: 35-48.

Luo, C.H., and Y.A. Rudy. 1994. A dynamic model of the cardiac ventricular action poten-
tial, I: Simulations of ionic currents and concentration changes. Circ. Res. 74: 1071-1096.

McCulloch, A.D., and G. Huber. 2002. Integrative biological modelling in silico. Pp. 4-25 in
‘In Silico’ Simulation of Biological Processes No. 247. Novartis Foundation Symposium. G.
Bock and J.A. Goode, eds. Chichester, U.K.: John Wiley & Sons Ltd.

McCulloch, A.D., J.B. Bassingthwaighte, P.J. Hunter, and D. Noble. 1998. Computational
biology of the heart: From structure to function. Progr. Biophys. Mol. Biol. 69: 153-155.

McDougall, S.R., A.R.A. Anderson, M.A.J. Chaplain, and J.A. Sherratt. 2002. Mathematical
modelling of flow through vascular networks: Implications for tumour-induced angio-
genesis and chemotherapy strategies. Bull. Math. Biol. 64: 673-702.

Meinhardt, H., and M. Gierer. 2000. Pattern formation by local self-activation and lateral
self-inhibition. Bioessays 22(8): 753-760.

Meir, E., G. von Dassow, E. Munro, and G.M. Odell. 2002. Robustness, flexibility, and the
role of lateral inhibition in the neurogenic network. Curr. Biol. 12(10): 778-786.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


UNDERSTANDING ORGANISMS 97

Miller, L.A., and C.S. Peskin. 2005. A computational fluid dynamics of ‘clap and fling’ in the
smallest insects. J. Exp. Biol. 208(Pt 2): 195-212.

Moe, G.K., W.C. Rheinbolt, and J. Abildskov. 1964. A computer model of atrial fibrillation.
Am. Heart J. 67: 200-220.

Mogilner, A., and G. Oster. 2003. Polymer motors: Pushing out the front and pulling up the
back. Curr. Biol. 13(18): R721-R733.

Monk, N.A.M. 2000. Elegant hypothesis and inelegant fact in developmental biology. En-
deavour 24(4): 170-173.

Morgenroth, E., H.J. Eberl, M.C. van Loosdrecht, D.R. Noguera, G.E. Pizarro, C. Picioreanu,
B.E. Rittmann, A.O. Schwarz, and O. Wanner. 2004. Comparing biofilm models for a
single species biofilm system. Water Sci. Technol. 49(11-12): 145-154.

Mosekilde, E., B. Lading, S. Yanchuk, and Y. Maistrenko. 2001. Bifurcation structure of a
model of bursting pancreatic cells. Biosystems 63(1-3): 3-13.

Murray, J.D. 1993. Mathematical Biology. New York, N.Y.: Springer-Verlag.
Myasnikova, E., A. Samsonova, K. Kozlov, M. Samsonova, and J. Reinitz. 2001. Registration

of the expression patterns of Drosophila segmentation genes by two independent meth-
ods. Bioinformatics 17(1): 3-12.

Nachman, I., A. Regev, and N. Friedman. 2004. Inferring quantitative models of regulatory
networks from expression data. Bioinformatics 20(Suppl 1): I248-I256.

Nakamura, Y., and K. Matsuno. 2003. Species-specific activation of EGF receptor signaling
underlies evolutionary diversity in the dorsal appendage number of the genus Droso-
phila eggshells. Mech. Dev. 120(8): 897-907.

Noble, D. 1962. A modification of the Hodgkin-Huxley equations applicable to Purkinje
fiber action and pacemaker potential. J. Physiol. 160: 317-352.

Oster, G., and H. Wang. 2003. Rotary protein motors. Trends Cell. Biol. 13(3): 114-121.
Panetta, J.C., M.A.J. Chaplain, and D. Cameron. 2000. Modelling the effects of Paclitaxel and

Cisplatin on breast and ovarian cancer. J. Theor. Med. 3: 11-23.
Pereanu, W., and V. Hartenstein. 2004. Digital three-dimensional models of Drosophila de-

velopment. Curr. Opin. Genet. Dev. 14(4): 382-391.
Perelson, A.S., A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho. 1996. HIV-1 dy-

namics in vivo: Virion clearance rate, infected cell life-span, and viral generation time.
Science 271(5255): 1582-1586.

Pittman, R.N. 2000. Oxygen supply to contracting skeletal muscle at the microcirculatory
level: Diffusion vs. convection. Acta Physiol. Scand. 168: 593-602.

Porksen, N., B. Nyholm, J.D. Veldhuis, P.C. Butler, and O. Schmitz. 1997. In humans at least
75% of insulin secretion arises from punctuated insulin secretory bursts. Am. J. Physiol.
273(5 Pt 1): E908-E914.

Pribyl, M., C.B. Muratov, and S.Y. Shvartsman. 2003. Discrete models of autocrine signaling
in epithelial layers. Biophys. J. 84(6): 3624-3635.

Puglisi, J.L., and D.M. Bers. 2001. LabHEART: An interactive computer model of rabbit ven-
tricular myocyte ion channels and Ca transport. Am. J. Physiol. 281: C2049-C2060.

Saucerman, J.J., and A.D. McCulloch. 2004. Mechanistic systems models of cell signaling
networks: A case study of myocyte adrenergic regulation. Prog. Biophys. Mol. Biol. 85(2/
3): 261-278.

Secomb, T.W., and A.R. Pries. 2002. Information transfer in microvascular networks. Micro-
circulation 9: 377-387.

Sedaghat, A.R., A. Sherman, and M.J. Quon. 2002. A mathematical model of metabolic insu-
lin signaling pathways. Am. J. Physiol. Endocrinol. Metab. 283(5): E1084-E1101.

Segal, S.S. 2000. Integration of blood flow control to skeletal muscle: Key role of feed arteries.
Acta Physiol. Scand. 168: 511-518.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


98 MATHEMATICS AND 21ST CENTURY BIOLOGY

Setty, Y., A.E. Mayo, M.G. Surette, and U. Alon. 2003. Detailed map of a cis-regulatory input
function. Proc. Natl. Acad. Sci. U.S.A. 100(13): 7702-7707.

Shvartsman, S.Y., C.B. Muratov, and D.A. Lauffenburger. 2002. Modeling and computa-
tional analysis of EGF receptor-mediated cell communication in Drosophila oogenesis.
Development 129(11): 2577-2589.

Smolen, P., D.A. Baxter, and J.H. Byrne. 2001. Modeling circadian oscillations with interlock-
ing positive and negative feedback loops. J. Neurosci. 21(17): 6644-6656.

Sussman, M.A., A. McCulloch, and T.K. Borg. 2002. Dance band on the Titanic: Biomechani-
cal signaling in cardiac hypertrophy. Circ. Res. 91: 888-898.

Thieffry, D., and L. Sanchez. 2003. Dynamical modelling of pattern formation during embry-
onic development. Curr. Opin. Genet. Dev. 13(4): 326-330.

Tomancak, P., A. Beaton, R. Weiszmann, E. Kwan, S. Shu, S.E. Lewis, S. Richards, M.
Ashburner, V. Hartenstein, S.E. Celniker, and G.M. Rubin. 2002. Systematic determina-
tion of patterns of gene expression during Drosophila embryogenesis. Genome Biol.
3(12): Research0088.

Topp, B., K. Promislow, G. deVries, R.M. Miura, and D.T. Finegood. 2000. A model of beta-
cell mass, insulin, and glucose kinetics: Pathways to diabetes. J. Theor. Biol. 206(4):
605-619.

Tornheim, K. 1997. Are metabolic oscillations responsible for normal oscillatory insulin se-
cretion? Diabetes 46(9): 1375-1380.

Turing, A.M. 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B 237: 37-72.
Umeda, T., and K. Inouye. 2004. Cell sorting by differential cell motility: A model for pattern

formation in Dictyostelium. J. Theor. Biol. 226(2): 215-224.
Ursino, M. 2003. Cerebrovascular modelling: A union of physiology, clinical medicine and

biomedical engineering. Editorial. Med. Eng. Physics 25: 617-620.
Vetter, F.J., and A.D. McCulloch. 1998. Three-dimensional analysis of regional cardiac

anatomy. Progr. Biophys. Mol. Biol. 69: 157-184.
von Dassow, G., E. Meir, E.M. Munro, and G.M Odell. 2000. The segment polarity network

is a robust developmental module. Nature 406(6792): 188-192.
Waldo, A.L., A.J. Camm, H. deRuyter, P.L. Friedman, D.J. MacNeil, J.F. Pauls, B. Pitt, C.M.

Pratt, P.J. Schwartz, and E.P. Veltri. 1996. Effect of d-sotalol on mortality in patients
with left ventricular dysfunction after recent myocardial infarction. The SWORD inves-
tigators. Survival with oral d-sotalol. Lancet 348: 7-12.

Yuh, C.-H., H. Bolouri, J.M. Bower, and E.H. Davidson. 1998. Genomic cis-regulatory logic:
Experimental and computational analysis of a sea urchin gene. Science 279(5358):
1896-1902.

Zakrzewicz, A., T.W. Secomb, and A.R. Pries. 2002. Angioadaptation: Keeping the vascular
system in shape. News Physiol. Sci. 17: 197-201.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


99

6

Understanding Populations

POPULATION GENETICS

From the earliest days of population genetics, mathematics has played
an important role in the field. Until the 1960s, most population genetics
theory focused on deductive analysis, and the models were generally fo-
cused on following the evolution of populations that were presumed to
have originally been located in just one or two places. Early investigators
showed how evolution would proceed under plausible models of genetic
inheritance and natural selection. These analyses illuminated the dynam-
ics of allele frequencies in populations, and they showed with what speed
evolution could occur and how this speed depended on various param-
eters. Both deterministic models and models with random genetic drift
were examined. Diffusion approximations to Markov chains were par-
ticularly important (Kimura, 1983). These diffusion processes could be
analyzed by solving simple ordinary differential equations to obtain im-
portant quantities such as the probability of fixation of a new variant and
the mean time for such fixation. These analyses strongly shaped our cur-
rent understanding of natural selection in large, but finite, populations
and guided experimental work. In recent years the emphasis has shifted
from these deductive activities to inductive or retrospective approaches
that address the question of what we can infer about evolutionary history
and the nature of the evolutionary process from current patterns of ge-
netic variation.

The primary goal of population and evolutionary geneticists today is
to understand patterns of genetic variation within populations and pat-
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terns of genetic divergence between species. Population geneticists have
asked, What are the important forces that determine the amount and na-
ture of genetic variation in populations, the spatial distribution of this
variation, the distribution of variation across the genome, and the evolu-
tionary changes that occur over short and long timescales? The process
that has shaped this variation within and between species is a complex
one involving a complex genome and a complex, spatially and temporally
varying environment. It is certain that stochasticity is an important aspect
of the process. The rapidly growing database of DNA polymorphism and
divergence studies from a variety of organisms, including humans and
other primates, provide an exciting opportunity to learn about the evolu-
tionary history of populations and the evolutionary processes that have
resulted in the patterns of variation that we observe in extant popula-
tions. The difficulty is that even very simple models of this process lead to
challenging mathematical problems.

Some examples of current approaches and the mathematical chal-
lenges facing us are described here. To be concrete and to avoid an overly
vague description of the problems, a very specific population genetic
model of sequence evolution will be described. The particular model, the
Wright-Fisher model, has a long and rich history, but it is not necessarily
the most realistic or tractable for every purpose, and it is only one of many
models that might have been considered here.

The Wright-Fisher model assumes discrete generations (as opposed
to a model with distinct age classes and overlapping generations, which
would be more realistic for some populations, including humans). The
focus is on a particular segment of the genome, referred to as a gene, and
it is first assumed that no recombination or mutation occurs. To begin, it is
assumed as well that population size (N) is constant and that there is no
spatial structure. A haploid model is also assumed, which means that each
individual carries just one copy of the gene. (Humans are in fact diploid,
which means that each individual carries two copies of each gene, a ma-
ternal and a paternal copy.)

In the Wright-Fisher model, successive generations are produced as
follows. Each of the N individuals of the offspring generation is produced
by replicating, without error, the gene sequence of a randomly drawn
individual of the parental generation. Each offspring individual is as-
sumed to be generated independently from the parental population in
this manner. The number of offspring of any particular individual of the
parent generation is thus a random variable, being the result of N inde-
pendent Bernoulli trials, with probability of success equal to 1/N. In large
populations, the number of offspring of any individual would approxi-
mately follow a Poisson distribution with mean 1. If it is supposed that
the parents do not all have identical gene sequences, then their distinct
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gene sequences are known as haplotypes. Given the frequencies of the
different haplotypes in the parental generation, the numbers of the differ-
ent haplotypes in the offspring generation will be multinomially distrib-
uted. Regardless of how much variation existed in the founding popula-
tion, the population under this model will eventually arrive at a state in
which every individual carries the same sequence. This process of ran-
dom change in the frequencies of the different haplotypes is referred to as
genetic drift, and it eventually results in the population becoming mono-
morphic.

Next, mutation is introduced into the model. Let it be supposed that
the replication process that generates an offspring copy of the gene from
its parent has some error rate, so that each offspring differs from its par-
ent at a Poisson-distributed number of sites in the gene sequence. If this
model is run for many generations, the pattern of genetic variation
asymptotically approaches a stationary distribution resulting from a sto-
chastic balance between mutation, which generates variation in the popu-
lation, and genetic drift, which tends to eliminate variation. Many prop-
erties of this stationary distribution are known. Also, many properties of
samples drawn from this stationary distribution are known. In the model
as it has been defined here, all individuals are in some sense equivalent.
For example, all individuals have the same distribution of offspring num-
ber with expectation equal to 1. All the genetic variation is said to be
selectively neutral, and the model is referred to as a neutral model. In
generalizations of this model, some sequence variants may have a sys-
tematic tendency to produce more offspring than others, and the fre-
quency of such variants will tend to increase. These are models of evolu-
tion with natural selection.

The Wright-Fisher neutral model is a particular case of a more gen-
eral class of neutral models in which all parents are equivalent; these are
referred to as “exchangeable models.” In these models, the distribution of
offspring number need not be Poissonian. In the limit of large popula-
tions and a low mutation rate, the models’ stationary properties depend
on a single compound parameter, Nu/v, where u is the mutation rate and
v is the variance of offspring number. Despite the simplicity of this model,
in which there is no selection, no geographic structure, no variation in
population size, and no recombination, the probabilities of sample con-
figurations of sequences under this model are difficult to calculate.
Strobeck (1983) first described recursions for these probabilities for the
case where only two or three haplotypes are present in a sample. The
difficulty of obtaining sample configuration probabilities led to the use of
summaries of the data, with an inevitable loss of information. Only in the
last 10 years have full likelihood approaches been developed. Griffiths
and Tavaré (1994a, 1995) were the first to find a practical method to esti-
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mate full likelihoods for this simple neutral model using a method based
on importance sampling. Kuhner et al. (1995) described a Markov chain
Monte Carlo (MCMC) method for obtaining quantities proportional to
the sample probabilities. The main point here is that the sampling proper-
ties of sequence data under even this simplest, one-parameter, neutral
model lead to recursions that are not analytically tractable. Monte Carlo
methods have provided a way forward. Much of the progress in under-
standing these models is based on analyzing properties of the genealogi-
cal relationships of sampled copies rather than analyzing the dynamics of
population frequencies of haplotypes. The population genetics theory of
sample genealogies has come to be known as calescent theory. The early
important work in this area was done by Watterson (1975), Kingman
(1982), and Tajima (1983). (See Chapter 2 for more information on this.)

For models without recombination, it is possible to extend these
Monte Carlo methods to the case in which population size is not held
constant. For some special cases, it is possible to infer past population size
changes (Griffiths and Tavaré, 1994b; Kuhner et al., 1995). Additional
Monte Carlo methods for demographic inference using other types of ge-
netic data (microsatellite data, for example) have also been developed
(Beaumont, 1999). Much remains to be done in this area.

Models with geographic structure are more difficult. Historically,
simple “island” models have been employed. These subdivide the popu-
lation, but with a special structure in which each subdivision is assumed
to communicate equally with all other subdivisions. More realistic step-
ping-stone models are more difficult, but some results are known (Durrett,
2002). Wakeley (2004) recently investigated a class of models with large
numbers of subdivisions and obtained elegant results for this model. This
work has capitalized on results for coalescent processes that operate on
different timescales. Bayesian Monte Carlo methods have again begun to
play an important role in analyzing data of several types (Pritchard et al.,
2000; Beaumont, 1999).

If recombination is added to the model, the difficulties increase enor-
mously. With recombination, each offspring produced in the model has
some small probability, r, of being the product of two parent individuals,
one parent contributing a part of the gene on the left and the other parent
contributing the rest of the gene, the boundary between the two contribu-
tions being random. In models with recombination, complex statistical
dependencies between sites arise. Sample configuration probabilities are
very difficult to obtain. For a model with just two sites between which
recombination can occur, a relatively simple recursion can be written
down for sample probabilities (Golding, 1984). These recursions are in-
tractable for all but very small samples, as the state space becomes enor-
mous. For more than two sites the situation quickly gets much worse.
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Griffiths and Marjoram (1996) present recursions for sample configura-
tion probabilities under the infinite-sites version of this model with re-
combination. These are not analytically tractable, but Monte Carlo meth-
ods have been described for estimating these sampling probabilities under
this model. However, unlike the case without recombination, it appears
that these Monte Carlo methods are computationally infeasible for
samples of interesting size because convergence, while difficult to assess,
appears to take inordinate amounts of computer time. As a consequence,
approximate methods, ad hoc methods, and methods based on summary
statistics are still the rule when analyzing data from genes with recombi-
nation (Stephens, 2001). Much interest has focused on making inferences
about recombination rates and gene conversion rates under models in
which the rates vary across the genome (McVean et al., 2004). Improved
methods could contribute to understanding the genetic mechanisms of
recombination and also help in the mapping of disease genes via associa-
tion studies.

There is also great interest in assessing the importance of natural se-
lection in shaping patterns of variation within populations and the diver-
gence between populations. Many ad hoc tests have been developed over
the years (Kreitman, 2000; Bustamante et al., 2003) to explore these ques-
tions. Devising methods that make more efficient use of the data and com-
bine information from many loci should be a priority. These inferences
about selection must be made in the context of realistic models of popula-
tion structure and demographic history. More realistic models of muta-
tion and recombination are also needed, building on results shown in re-
cent work such as (Hwang and Green, 2004; Meunier and Duret, 2004).
This recent work points out how much there is still to learn about molecu-
lar evolution and how rich the mathematical models will need to be to
capture it.

The focus thus far in this chapter has been on variation within species,
but comparisons of sequences from different species can also be very in-
formative, both about evolutionary relationships of species (the phyloge-
netic inference problem) and about evolutionary processes. Again, recent
years have seen important progress on likelihood methods (Felsenstein,
1981) and, most recently, on the use of Monte Carlo approaches
(Huelsenbeck and Ronquist, 2001; Wong et al., 2004). Combining between-
and within-species data can be very useful, as is well exemplified by the
analysis of Poisson random field models (Bustamante et al., 2003). A re-
maining challenge in phylogenetic inference includes the problem of per-
forming multiple alignments and phylogenetic reconstruction simulta-
neously. Currently, alignment is carried out while ignoring phylogenetic
relationships, and phylogenetic reconstruction is carried out only with
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fully aligned sequences produced prior to the reconstruction. This clearly
is not an optimal solution.

Genetic data are becoming available at an ever-increasing rate. More
loci, more species, and more individuals within species will be surveyed.
More and more frequently, essentially complete genomes will be
compared. These advances result in new opportunities and new math-
ematical and computational challenges. Different biological questions,
different organisms, and different types of genetic markers will require
somewhat different models, different methods, and different approxi-
mations. With more and richer data sets, researchers will be able to fruit-
fully consider somewhat more complex models, with increased demo-
graphic complexity (bottlenecks and expansions, more complex spatial
structure) and increased genetic complexity (heterogeneous recombina-
tion and mutation rates), and with more complex types of natural selec-
tion (interaction between sites and spatial and temporal variation in se-
lection coefficients). These complexities present significant mathematical
challenges. Stochastic models, possibly with many parameters, and com-
plex, nonindependent data make the computational difficulties substan-
tial. Insight about the models and mathematical skill will be needed to
make progress. While a wide range of approaches will clearly contribute
to advances, the important roles that Monte Carlo methods and Bayesian
approaches have recently played seem likely to continue.

ECOLOGICAL ASPECTS OF POPULATIONS

Population growth with density dependence was formulated math-
ematically by Verhulst (1838), who developed a number of models to
investigate the consequences of deviations from unrestricted growth.
One of the models, known as the logistic equation, remains a standard
model for population growth. It is described by the following differential
equation:

dN
dt

rN
N
K

= 





1 –

where N(t) is the population size at time t, r is the intrinsic rate of growth,
and K is the carrying capacity. This model continues to serve as an impor-
tant illustration of the effects of negative density dependence, as encoded
by the term in parentheses. It is an example of a phenomenological model,
one that is intended to embody, in a concise form, some of the observed
behaviors of populations, but it has also been used as a predictive model:
Based on data on the U.S. population from 1790 to 1910, Pearl and Reed
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(1920) fitted the logistic equation to the observed growth of the U.S. popu-
lation, estimating that it would level off at 197 million.

A discrete-time version of the logistic growth equation exhibits sur-
prising properties, from periodic behavior to chaos. This latter behavior
was introduced to ecology by May (1974, 1976). Although a known phe-
nomenon in mathematics, the idea that deterministic models can exhibit
unpredictable behavior was new to ecologists at that time and still spawns
new research in ecology (Cushing et al., 2002). Although difficult to verify
in nature, experimental systems have been developed to test for chaos
(Costantino et al., 1997). The theoretical study of single populations in a
purely ecological context remains challenging. Much research is being
devoted to anthropogenic impacts on natural and managed systems.
Mathematical challenges include modeling and analysis of spatial aspects,
temporal and spatial variation, demographic stochasticity (in particular
when dealing with small populations), and nonequilibrium dynamics. The
committee highlights two areas of interest: species extinction and food
supply.

The threat of species extinction arising from either habitat fragmen-
tation or species invasion has resulted in much theoretical work. The need
here is for both conceptual models, which will give us a better under-
standing of the underlying mechanisms, and predictive models, which
can be used for management. Much of the theoretical work focuses on
single-species models. On the empirical side, observational studies domi-
nate, and data are not always unequivocal (Debinski and Holt, 2000).
There are few controlled experiments of habitat fragmentation and
species invasions because of the difficulties associated with these
experiments.

Reliable food supply depends on the ability to manage this renew-
able resource. Fisheries management is an example that has enjoyed so-
phisticated modeling by both economists and biologists. Conceptual and
highly species-specific models are widespread, but many focus only on
single populations. Large, spatially explicit data sets exist, although there
are troublesome uncertainties associated with some of the data. More
realistic models also must deal with the uncertainties associated with
management strategies and inherently stochastic processes, such as birth
and death. They also need to take food web structure into account. A
comprehensive model that includes visualization tools was developed
by James Kitchell and co-workers for the Central North Pacific ecosys-
tem to assess the effects of fishing on productivity (Hinke et al., 2004).
Visualizations are useful to convey the impact of different management
scenarios to managers. The development of such complex models re-
quires a thorough understanding of the ecological interactions in addi-
tion to long-term data to parameterize the models and test scenarios.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


106 MATHEMATICS AND 21ST CENTURY BIOLOGY

These models are typically so complex that simulation is the only tool
currently available for investigation.

In the two cases discussed here, the need is for models that incorpo-
rate the complex interactions of the target species with its surroundings,
often in spatially heterogeneous habitats and under nonequilibrium con-
ditions. Models that are used for management purposes often include
social and economic aspects. The importance of developing methods to
study nonequilibrium dynamics cannot be overemphasized (see, for ex-
ample, Hastings, 2004). Some of the mathematical theory has been devel-
oped, in particular when different timescales are involved. Many eco-
logical interactions occur far away from equilibrium, and large-scale
anthropogenic perturbations, such as land use change, species invasions,
or alterations of nutrient or carbon cycles, exacerbate this problem. Land
use change and the invasion of exotic species often result in rapid changes
and thus have the potential to move a system far from equilibrium, with
consequences for both ecological and evolutionary processes (see below).
Even experimental systems are probably not in equilibrium: Most field
experiments are studied over only short timescales, even if the dynamics
are slow.

A SYNTHESIS OF ECOLOGY AND EVOLUTION

During ecology’s early years, evolutionary thinking was prevalent.
However, as ecology focused more and more on abiotic and biotic causes
of diversity and species abundance, evolutionary thinking became less
prominent (Collins, 1986). Much of ecology now operates under the
premise that ecological and evolutionary processes act on different time-
scales. Evolutionary processes are often thought to take hundreds of gen-
erations before their effects can be measured, whereas ecological pro-
cesses often show effects after a few generations. This has led to the
intellectual separation of ecology and evolution. For systems that are
under strong selection, however, this may not be the case. There are clas-
sic examples, such as melanism among moths as a response to air pollu-
tion (Kettlewell, 1955) or the heavy-metal tolerance of plants (Bradshaw,
1952). As a consequence, purely ecological or purely genetic models are
often inadequate when strong selection is acting (Neuhauser et al., 2003).
An increasing number of studies are combining ecological and evolu-
tionary models to meet this challenge of understanding the consequences
of ecological and evolutionary forces acting on similar timescales
(Antonovics, 1992; Thompson, 1999; Whitman et al., 2003).

The mathematical challenges when both ecological and evolutionary
processes are considered simultaneously are numerous. First, the dimen-
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sionality increases because additional parameters must be introduced to
model both ecological and evolutionary processes. Second, these processes
are frequently both spatial and stochastic. The study of spatial stochastic
systems is an active area of mathematical research, but at this point, only
the simplest models seem to be tractable in a rigorous way. Third, the
interplay between ecological and evolutionary processes is most pro-
nounced during transient dynamics. Since there are no readily available
analytical methods for nonequilibrium processes that are spatial and sto-
chastic, most studies resort to simulations as the primary way to gain in-
sights. The following example illustrates a biological problem and the
mathematical challenges it brings.

As an example of why one might wish to couple ecological and evolu-
tionary processes, and of the mathematical challenges that result, con-
sider the evolution of resistance. This is of importance, for instance, in
understanding the ramifications of the use of transgenic Bt crops, which
have been engineered to express a toxin from the soil bacterium Bacillus
thuringiensis (Bt). Engineered versions are available for a number of crop
plants, such as maize, potatoes, cotton, and soybeans. In maize, the toxin
is expressed at high levels and is toxic to the European corn borer, Ostrinia
nubilalis (Hübner), the key herbivore insect pest. An important concern is
the pest’s development of resistance to the toxin (Tabashnik, 1994; Gould,
1998). Current practice is to plant a “refuge” of non-Bt maize alongside Bt
maize to allow sufficient numbers of susceptible European corn borers to
be available as mates if resistant types emerge from the Bt field. To model
the evolution of resistance, two things are needed: nonequilibrium mod-
els for at least two types of patches (Bt field and non-Bt field) and the
ability to study the time-varying genetic composition of European corn
borer populations throughout these modeled patches. One of the first
models that incorporated these aspects was developed by Comins (1977).
Since then, other models have been developed, and each seems to reveal
additional complexities. A consistent theory is still lacking, and it will
need to also take into account the community dynamics of associated en-
emies of the insect pest (see, for example, Neuhauser et al., 2003).

The field of population biology focuses largely on single populations.
Except under controlled experimental situations, populations rarely live
in isolation. Populations are typically embedded in communities, and
their dynamics are strongly influenced by other members of the commu-
nity. These feedbacks greatly complicate our understanding of the dy-
namics and present great challenges. The next chapter will discuss com-
munities.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


108 MATHEMATICS AND 21ST CENTURY BIOLOGY

REFERENCES

Antonovics, J. 1992. Toward community genetics. Pp. 426-449 in Plant Resistance to Herbi-
vores and Pathogens: Ecology, Evolution, and Genetics. R.S. Frite and E.L. Simms, eds. Chi-
cago, Ill.: University of Chicago Press.

Beaumont, M. 1999. Detecting population expansion and decline using microsatellites. Ge-
netics 153: 2013-2029.

Bradshaw, A.D. 1952. Populations of Agrostis tenuis resistant to lead and zinc poisoning.
Nature 169: 1098-1099.

Bustamante, C.D., R. Nielsen, and D.L. Hartl. 2003. Maximum likelihood and Bayesian meth-
ods for estimating the distribution of selective effects among classes of mutations using
DNA polymorphism data. Theor. Popul. Biol. 63(2): 91-103.

Collins, J.P. 1986. Evolutionary ecology and the use of natural selection in ecological theory.
J. Hist. Biol. 19: 257-288.

Comins, H.N. 1977. The development of insecticide resistance in the presence of migration.
J. Theor. Biol. 64: 177-179.

Costantino, R.F., R.A. Desharnais, J.M. Cushing, and B. Dennis. 1997. Chaotic dynamics in
an insect population. Science 275: 389-391.

Cushing, J.M., R.F. Constantino, B. Dennis, R.A. Desharnais, and S.M. Henson. 2002. Chaos
in Ecology: Experimental Nonlinear Dynamics. San Diego, Calif.: Academic Press.

Debinski, D.M., and R.D. Holt. 2000. A survey and overview of habitat fragmentation ex-
periments. Conserv. Biol. 14: 342-355.

Durrett, R. 2002. Probability Models for DNA Sequence Evolution. New York, N.Y.: Springer-
Verlag.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood ap-
proach. J. Mol. Evol. 17(6): 368-376.

Golding, G.B. 1984. The sampling distribution of linkage disequilibrium. Genetics 108:
257-274.

Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: Integrating pest genetic
and ecology. Annu. Rev. Entomol. 43: 701-726.

Griffiths, R.C., and S. Tavaré. 1994a. Simulating probability distributions in the coalescent.
Theor. Popul. Biol. 46: 131-159.

Griffiths, R.C., and S. Tavaré. 1994b. Sampling theory for neutral alleles in a varying envi-
ronment. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 344(1310): 403-410.

Griffiths, R.C., and S. Tavaré. 1995. Unrooted genealogical tree probabilities in the infinitely-
many-sites model. Math. Biosci. 127(1): 77-98.

Griffiths, R.C., and P. Marjoram. 1996. Ancestral inference from samples of DNA sequences
with recombination. J. Comput. Biol. 3(4): 479-502.

Hastings, A. 2004. Transients: The key to long-term ecological understanding? Trends Ecol.
Evol. 19: 39-45.

Hinke, J.T., I.C. Kaplan, K. Aydin, G.M. Watters, R.J. Olson, and J.F Kitchell. 2004. Visualiz-
ing the food-web effects of fishing for tunas in the Pacific Ocean. Ecol. Soc. 9: 10.

Huelsenbeck, J.P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic
trees. Bioinformatics 17(8): 754-755.

Hwang, D.G., and P. Green. 2004. Bayesian Markov chain Monte Carlo sequence analysis
reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad.
Sci. U.S.A. 1011(39): 13994-14001.

Kettlewell, H.B.D. 1955. Selection experiments on industrial melanism in the Lepidoptera.
Heredity 9: 323-342.

Kimura, M. 1983. The Neutral Theory of Molecular Evolution. New York, N.Y.: Cambridge
University Press.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


UNDERSTANDING POPULATIONS 109

Kingman, J.F.C. 1982. On the genealogy of large populations. J. App. Prob. 19A: 27-43.
Kreitman, M. 2000. Methods to detect selection in populations with applications to the hu-

man. Annu. Rev. Genomics Hum. Genet. 1: 539-559.
Kuhner, M.K., J. Yamato, and J. Felsenstein. 1995. Estimating effective population size and

mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140(4):
1421-1430.

May, R.M. 1974. Biological populations with non-overlapping generations: Stable points,
stable cycles and chaos. Science 186: 645-647.

May, R.M. 1976. Simple mathematical models with very complicated dynamics. Nature 262:
495-467.

McVean, G.A., S.R. Myers, S. Hunt, P. Deloukas, D.R. Bentley, and P. Donnelly. 2004. The
fine-scale structure of recombination rate variation in the human genome. Science 304:
58104.

Meunier, J., and L. Duret. 2004. Recombination drives the evolution of GC-content in the
human genome. Mol. Biol. Evol. 21: 984-990.

Neuhauser, C., D.A. Andow, G.E. Heimpel, G. May, R.G. Shaw, and S. Wagenius. 2003.
Community genetics: Expanding the synthesis of ecology and genetics. Ecology 84:
545-558.

Pearl, R., and L. J. Reed. 1920. On the rate of growth of the population of the United States
since 1870 and its mathematical representation. Proc. Natl. Acad. Sci. U.S.A. 6: 275-288.

Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using
multilocus genotype data. Genetics 155(2): 945-959.

Stephens, M. 2001. Inference under the coalescent. Pp. 213-238 in Handbook of Statistical Ge-
netics. D.J. Balding, M. Bishop, and C. Cannings, eds. New York, N.Y.: John Wiley &
Sons Ltd.

Strobeck, C. 1983. Estimation of the neutral mutation rate in a finite population from DNA
sequence data. Theor. Popul. Biol. 24(2): 160-172.

Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39:
47-79.

Tajima, F. 1983. Evolutionary relationships of DNA sequences in finite populations. Genetics
105: 437-460.

Thompson, J.N. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat.
153S: 1-14.

Verhulst, P.F. 1838. Notice sur la loi que la population suit dans son accroissement. Corresp.
Math. Phys. 10: 113-121.

Wakeley, J. 2004. Recent trends in population genetics: More data! More math! Simple mod-
els? J. Heredity 95: 397-405.

Watterson, G.A. 1975. On the number of segregating sites in genetic models without recom-
bination. Theor. Popul. Biol. 7: 256-276.

Whitham, T.G., W. Young, G.D. Martinsen, C.A. Gehring, J.A. Schweitzer, S.M. Shuster,
G.M. Wimp, D.G. Fischer, J.K. Bailey, R.L. Lindroth, S. Woolbright, and C.R. Kuske.
2003. Community genetics: A consequence of the extended phenotype. Ecology 84:
559-573.

Wong, W.S., Z. Yang, N. Goldman, and R. Nielsen. 2004. Accuracy and power of statistical
methods for detecting adaptive evolution in protein coding sequences and for identify-
ing positively selected sites. Genetics 168(2): 1041-1051.

Copyright © National Academy of Sciences. All rights reserved.

Mathematics and 21st Century Biology 
http://www.nap.edu/catalog/11315.html

http://www.nap.edu/catalog/11315.html


110

7

Understanding Communities and
Ecosystems

An ecological community is an assemblage of populations of differ-
ent species (plants, animals, fungi, microbes, etc.) at a given place and
time. The living organisms of a community cannot be separated from their
physical and chemical environment, and the combination of a community
and an environment is referred to as an ecosystem. Although a commu-
nity is often characterized by a dominant feature—as is, for example, a
desert community or an oak savanna community—its species composi-
tion has a significant random component.

Community ecology is concerned with explaining patterns of diver-
sity, the distribution and abundance of species within the context of these
assemblages, and the underlying processes. The field of community ecol-
ogy has developed rapidly over the last few decades, driven by the need
to understand the consequences of anthropogenic impacts on the func-
tioning of ecological communities.

Our understanding of how communities assemble has changed over
time (Kingsland, 1991). It has ranged from regarding an ecological com-
munity as a random assemblage (Gleason, 1926) to thinking of it as a
“complex organism” (Clements, 1936). In the beginning of community
ecology, questions focused on community structure, population dynam-
ics, and, in the case of plant communities, on succession (Grinnell, 1917;
Clements et al., 1929). The abiotic (nonliving) environment was assigned
a minor role until Lindeman’s seminal paper (1942) on the trophic-dy-
namic aspects of ecology, which established the ecosystem as the funda-
mental unit.

Mathematics has played a vital role in framing community ecology
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concepts. Deterministic models (systems of differential or difference equa-
tions) dominated theoretical advances for much of the history of the field,
and they continue to be the single most important choice of modeling
framework for analytical models. In the 1920s and 1930s, two key con-
cepts were formalized using deterministic models: competition and pre-
dation. Mathematical models greatly enhanced our understanding of both
processes. Competition has been identified as an important process of eco-
logical communities ever since Darwin proposed it as the chief mecha-
nism in the evolution of species (Darwin, 1859). The competition models
by Lotka (1932) and Volterra (1926), formulated as systems of differential
equations, provide a theoretical framework for the dynamic interactions
within a trophic level.1  This framework was further developed by Elton
(1927, 1933) using the concept of a niche, which he defined as “the status
of an animal in its community.” He linked this concept to competition in
order to explain how multiple species can persist within a community. A
mathematical formulation of the niche concept was finally given by
Hutchinson (1957), who defined a niche as a subset of an n-dimensional
hypervolume. This concept is still useful today. While the models of Lotka
and Volterra describe phenomena, they lack mechanisms for competition.
Tilman’s (1982) resource competition model led the way from phenom-
enological to mechanistic competition models. Like the Lotka-Volterra
models, mechanistic competition models are also based on systems of dif-
ferential equations and continue to form the conceptual basis for under-
standing competition among multiple species.

Predation is by definition a process that occurs between trophic lev-
els. Lotka (1925) and Volterra (1926) were the first to provide a math-
ematical formulation of this process, again using systems of differential
equations. Differential equations model continuous time dynamics and
are thus well suited for populations with overlapping generations. How-
ever, this does not always hold for biological situations. For instance, the
seasonal dynamics of a host and an associated parasitoid2  are better de-
scribed by discrete time models. To include this aspect of biological real-
ism into models, Nicholson and Bailey (Nicholson, 1933; Nicholson and
Bailey, 1935) promoted systems of difference equations to describe preda-
tion models. Difference equations are now commonly employed to model
interactions among species with nonoverlapping generations.

In the 1950s and 1960s the focus shifted toward understanding the

1A trophic level is a stratum of the food chain consisting of species the same number of
steps from the primary source of nutrition.

2A parasitoid is an insect that lays its eggs in, on, or near a host and whose offspring
consume the host as they develop.
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relationship between the diversity of an ecological community and its sta-
bility (Real and Levin, 1991). Using qualitative arguments, Odum (1953),
MacArthur (1955), and Elton (1958) concluded that diversity and stability
were positively correlated. Despite the absence of carefully designed ex-
periments and mathematical models to corroborate this claim, it remained
unchallenged until May (1972, 1974) and others investigated models of
randomly assembled communities whose dynamics were described by
systems of differential equations, similar to those of Lotka and Volterra.
These theoretical studies led to the opposite conclusion: Stability and di-
versity were negatively correlated. The conclusion was based on rigorous
mathematics, though it lacked the synergy and validation that come from
combining theoretical and empirical work. It became widely accepted by
community ecologists but was questioned by ecosystem ecologists (Patten,
1975; McNaughton, 1977; Loreau et al., 2002). The diversity-stability de-
bate was revived in the 1990s, when carefully designed experiments and
mathematical models that directly addressed the variability of species
abundances questioned the negative correlation between stability and di-
versity (see Box 7.1).

Models that try to address basic principles or processes and that focus
on ideas rather than on specific biological systems have played a large
role in ecology. These will be referred to as conceptual models. Many of
the conceptual models of community ecology are framed as systems of
differential or difference equations. This framework carries an implicit
assumption of spatial homogeneity, but of course it is known that spatial
movements and dispersal of individuals and spatial interactions among
individuals can lead to spatial heterogeneity. Spatial movement was first
included in ecological models in the 1950s with Skellam’s (1951) work on
the spread of muskrats. The equations were identical to those developed
by Fisher (1937) to describe the spread of a novel allele. Both partial differ-
ential equations and integro-differential equations are commonly em-
ployed now to model movement and dispersal (Okubo, 1980; Holmes et
al., 1994; Okubo and Levin, 2001). They are also used to investigate the
effects of spatially dependent factors on the dynamics of multispecies
communities. This has led to the insight that biotic interactions alone can
generate spatial patterns.

Stochastic models are rarely employed in theoretical ecological stud-
ies owing to the difficulties in analyzing them, even though both environ-
mental and demographic stochasticity play an important role in the dy-
namics of ecological communities. Demographic stochasticity refers to
randomness that is inherent in demographic processes, such as birth or
death. It is of particular importance when populations are small. Environ-
mental stochasticity—for instance, unexplained variation in precipitation
or temperature that may affect fecundity or the survival of species—can
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have significant effects on communities, as illustrated by the work of
Chesson and Warner (Chesson and Warner, 1981; Chesson, 1994), who
introduced a general modeling framework to address the role of environ-
mental stochasticity in species coexistence. This work demonstrated the
importance of nonlinear, species-specific responses to the environment
that can resonate into future generations.

Demographic stochasticity has also been incorporated into individual-
based spatial models where interactions among small groups of individu-
als are important. The study of these models was initiated by Spitzer
(1970) in the United States and Dobrushin (1971) in the Soviet Union. The
models are spatially explicit Markov processes, called interacting particle
systems. These models were originally developed for problems in statisti-
cal physics, but it soon became clear that local interactions are important
in other fields as well, including community ecology. The study of inter-
acting particle systems and their discrete-time analogs, discrete-time cel-
lular automata, has greatly advanced our understanding of the role of
space and local interactions in the dynamics of ecological communities.
This remains a very active area of research (Durrett and Levin, 1994;
Neuhauser, 2001).

Interacting particle systems or cellular automata are easy to formu-
late, so much so that there are now numerous theoretical ecology papers
that base the analysis of spatially explicit models solely on simulations.
Their mathematical analysis, however, is a highly nontrivial matter. Re-
sults from simulation studies can be quite misleading, because the be-
havior of a finite system can differ from that of the related infinite system
(Neuhauser and Pacala, 1999), and the results may not be robust with
respect to the choice of local interactions (Anderson and Neuhauser,
2002). Dynamics, in particular in two spatial dimensions, may also be
slow enough so that it takes a long time for the system to accurately re-
flect long-term behavior. For instance, the voter model (Clifford and
Sudbury, 1973; Holley and Liggett, 1975) and the multitype contact pro-
cess (Neuhauser, 1992; Neuhauser and Pacala, 1999) in two spatial di-
mensions exhibit clustering of like community members, with clusters
growing indefinitely. Computer simulations have led researchers to be-
lieve that it is possible for competing species to coexist in such systems,
yet rigorous mathematical analysis shows eventual exclusion of all but
one type in arbitrarily large regions. This demonstrates the need for rig-
orous mathematical analysis.

Some analytical methods for dealing with local spatial interactions
and/or stochasticity have been developed, such as metapopulation mod-
els and the moment approximation. Metapopulations are spatially implicit
models (Levins, 1969; Hanski, 1999). They are formulated as systems of
differential equations and track the dynamics of populations on a finite or
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BOX 7.1
The Productivity-Stability-Diversity Debate

The relationship between productivity, stability, and diversity has been
of long-standing interest, from both a purely academic point of view and a
management perspective, where it has become pressing to understand the
consequences of the large-scale diversity loss caused by anthropogenic
disturbances. The following illustrates how increasingly more sophisticated
mathematical models in combination with carefully designed experiments
expand our understanding of important processes.

The past 50 years have seen a lively debate on whether diversity re-
sults in more stable and more productive ecosystems or whether the oppo-
site is true. The arguments in favor of a positive correlation between stabil-
ity and diversity in the 1950s were based on superficial comparisons
between species-poor agricultural systems and species-rich tropical sys-
tems. The opposite conclusion, reached in the 1970s, was based on rigor-
ous mathematical analysis of the equilibrium behavior of multispecies
models. Early on in the discussions there was confusion, partly because
different groups of researchers used different definitions of stability. The
multiple definitions of stability were clarified by Pimm (1984), but the de-
bate is still unresolved.

Loss of biodiversity can affect ecosystem processes such as nutrient
cycling and energy flow. It is thus not surprising that ecosystem ecologists
increasingly joined the debate on the role of biodiversity. This coming to-
gether of community ecology and ecosystem ecology since the beginning
of the 1990s has helped refocus and expand the debate. A series of short-
term and longer-term experiments were conducted to understand the role
of biodiversity on ecosystem processes (Lawton et al., 1993; Naeem et al.,
1994; Tilman and Downing, 1994). Theoretical studies soon followed.

infinite number of patches. Dispersal among the patches is assumed to be
on a complete graph; that is, all patches are equally accessible from any
other patch. Moment approximations, commonly employed in statistical
physics, have proved to be useful in community ecology for studying spa-
tial clustering (Bolker and Pacala, 1997).

The connections among the four major modeling frameworks
(ordinary differential equation, partial differential equation, integro-
differential equation, and interacting particle system) are well established
(Durrett and Levin, 1994). As the interaction neighborhood in an inter-
acting particle system increases either through an increase in movement
relative to demographic processes or an increase in dispersal, a partial
differential equation in the former case and an integro-differential equa-
tion in the latter case become good approximations; removing, in addi-
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tion, spatial heterogeneities results in an ordinary differential equation.
Looking at this another way, if one needs to include the effects of fluctua-
tions, correlations, and spatial heterogeneities, the simple framework of
ordinary differential equations no longer suffices. Instead, the much more
complicated framework of interacting particle systems (or similar pro-
cesses) must be understood. The past 30 years of research in this area
have considerably improved our understanding, but much work remains,
because the properties of more complex multispecies assemblages em-
bedded in ever-changing environments are only beginning to be re-
vealed.

Analytical models will be increasingly complemented by complex
simulation models that attempt to incorporate nonlinearities, nonequi-
librium behavior, genetic composition, space, demographic, and envi-

Systems of differential equations still dominated theoretical investigations,
but there was an increased focus on ecosystem processes (e.g., Loreau,
1998). A different class of mathematical models found their way into the
debate. Instead of deterministic systems of differential equations, where
stability is based on eigenvalue properties, stochastic models were intro-
duced that allowed keeping track of variability of both individual species
and the entire community (e.g., Lehman and Tilman, 2000).

Much of the empirical and theoretical work includes only primary
producers and disregards trophic links (but, see Ives et al., 2000). The po-
tential importance of this link has been pointed out by Paine (2002). The
experiments ignored belowground processes. Wardle and van der Putten
(2002) point out the lack of evidence for a diversity-productivity relation-
ship in decomposer systems. The role of symbiotic organisms also warrants
further study (van der Heijden and Cornelissen, 2002). The role of
biodiversity in belowground processes has only recently received attention
(Freckman et al., 1997; special issue of BioScience, February 1999).

Theoretical work will need to be closely linked to experimental work.
To guide experiments, it needs to focus on quantities that are measurable
in field experiments. To have predictive power, models need to be param-
eterized by experimental data. Future theoretical investigations will need
to include the complex interactions among different trophic levels,
belowground processes, the evolutionary potential of the organisms, envi-
ronmental fluctuations, and spatial structure. They will also need to ad-
dress nonequilibrium behavior. There will be an increased need for long-
term data in different ecosystems. The current experiments indicate that the
dominant process can change over time (Fargione et al., 2004), and it will
be important to provide ways to statistically test for such changes (e.g.,
Loreau and Hector, 2001).
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ronmental stochasticity. Even though (or because) computers have
greatly expanded our ability to study large and complex systems, there
remains a need for analytical methods. Many of the complex systems
have large numbers of parameters that make exhaustive simulations
nearly impossible. Developing mathematically tractable approximations
of a complex simulation model can yield valuable insights into the be-
havior of complex models.

Ecological interactions are often complex and nonlinear and involve
multiple species. Multiple stable states are a hallmark of such systems,
which can lead to catastrophic changes under disturbances (Scheffer and
Carpenter, 2003, and references therein). Mathematical modeling has
yielded significant insights into dynamic consequences of the presence of
multiple stable states. Modeling has also been applied to the recovery of
systems that have undergone environmental degradation. It is often diffi-
cult to restore the original system, and it has been conjectured that this is
because the system has reached a different equilibrium state (or, more
generally, is in a different domain of attraction).

The importance of studying transient dynamics was pointed out by
Hastings (2004). Most ecological interactions are probably far away from
equilibrium. Large-scale anthropogenic perturbations, such as land-use
change or nitrogen addition, are additional processes that result in
nonequilibrium situations. Some of the mathematical theory has been de-
veloped, in particular when different timescales are involved. Most field
experiments are studied over only short timescales, even if the dynamics
are slow, thus probably describing dynamics that are not in equilibrium.

COMPUTATION

Multispecies interactions across trophic levels, including ecosystem
processes, provide statistical and modeling challenges for community
ecologists. The statistical analysis of large data sets that often cannot sim-
ply be analyzed using standard statistical software packages requires
model development and computational methods to estimate parameters
and test hypotheses. The theoretical study of large, complex systems re-
sults in models that are often analytically intractable. Computational ad-
vances have made possible the study of these models, which are currently
framed as systems of differential equations. Increasingly though, a spatial
component and stochastic factors are included, and both equilibrium and
nonequilibrium dynamics are investigated. Few tools are currently avail-
able to deal with these frameworks when applied to large systems.

Inference in community ecology frequently deals with multiple com-
peting hypotheses. Model selection as a way to distinguish between hy-
potheses provides alternatives to traditional hypothesis testing (see
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Johnson and Omland, 2004, for a review). The idea here is to formulate
two or more models with different embedded hypotheses, compare them
with data, and analyze the goodness of fit to reveal which of the hypoth-
eses appear to be borne out by the data. This framework was initially
developed over 30 years ago (Akaike, 1973) but is only now receiving
attention in ecology. It provides a way to quantify the relative support for
competing hypotheses based on data. Further development of this useful
tool will probably impact both experimental design and statistical analy-
sis in ecology.

Assessment of uncertainty remains a key challenge in ecological mod-
eling (Brewer and Gross, 2003). Few models include a stochastic compo-
nent, so they are not set up to provide a distribution of results from mul-
tiple runs. In addition, different modeling approaches can yield different
predictions even if the same scenarios are modeled, reflecting uncertainty
in our knowledge of the underlying processes. Averaging over different
models has recently been suggested as a way to increase the robustness of
results (Koster et al., 2004). However, there is no general theory at this
point that lends credence to such ad hoc methods.

Predictive models of ecosystems also increasingly include economic
and social components. For instance, the goal of a recent National Center
for Ecological Analysis and Synthesis workshop, “Global Biodiversity Sce-
narios” (Chapin et al., 2001), was to combine vegetation and climate mod-
els with economic and social scenarios to predict the effects of human
impact on major biomes.

The management of natural ecosystems relies increasingly on sophis-
ticated models. Spatial heterogeneity and demographic and environmen-
tal stochasticity are often key driving factors. Spatial control, a mathemati-
cally sophisticated and computationally intensive tool, appears to be a
promising methodology (Hof and Bevers, 1998, 2002).

FUTURE DIRECTIONS

Interactions at the community level are influenced by and influence
all other levels of organization, from genes to ecosystems, including abi-
otic conditions such as temperature, precipitation, and nutrient availabil-
ity. For a full understanding of processes at the community level, integra-
tion across disciplines, scales, and levels of organization will be needed.
The following exemplify this integration and highlight some of the math-
ematical developments that need to occur in order to accomplish this inte-
gration. First come the processes discussed earlier that shape ecological
communities: competition and predation.

Ecology has traditionally been divided into community ecology and
ecosystem ecology. Community ecology focuses on population dynamics
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and the interplay between the biotic and abiotic environment. Ecosystem
ecology deals with fluxes of nutrients and energy. Models in community
ecology describe the dynamics of biomass or individuals, whereas mod-
els in ecosystem ecology describe fluxes of matter and energy among func-
tional units. The past 15 years have increasingly witnessed research at the
interface of the two ecologies (Naeem et al., 2002). Research that addressed
the diversity-stability-productivity debate illustrates this emerging syn-
thesis of the two fields (Box 7.1). Research in this area will probably see
greater integration across spatial scales and across levels of organization.

Food web studies are another example where integration across fields,
scales, and levels of organization is occurring. Food webs are complex
networks of interacting groups of species. A community ecology approach
focuses on particular species and attempts to understand their interac-
tions as described by competition, predation, or facilitation. A classic
study by Paine (1966) illustrates this approach: Recognizing that detailed
bookkeeping of the calorie consumption of the members of a food web
could explain food web structure and, ultimately, the diversity of a local
community, Paine manipulated food webs through removal (or addition)
experiments so as to assess the importance of each link. As one of its most
significant conclusions, the study demonstrated a drastic decrease in di-
versity after removal of the starfish Pisaster B. glandula from an intertidal
community, thus identifying predation as an important process for main-
taining diversity. Paine and Levin (1981) introduced a disturbance model
that modeled the dynamics of gaps left behind by a predator and their
subsequent recolonization. The model was parameterized by field data
and yielded predictions that compared well with observations.

An ecosystem approach to food webs disregards species identities and
instead focuses on functional groups, such as autotrophs, detritus, het-
erotrophs, and nutrient pools. This approach leads to compartment mod-
els that track the flux of matter and energy among the compartments. This
flux is typically described by systems of differential equations.

Reiners (1986) proposed a theoretical framework for ecosystem dy-
namics that included both energy and nutrient considerations, calling it
ecological stoichiometry. The recent book by Sterner and Elser (2002) on
ecological stoichiometry provides a synthesis of processes at the cellular
level to ecosystem levels based on such stoichiometry and the resulting
nutrient demands of the biota. Food web models that combine both ap-
proaches are still in their early stages but have already yielded interesting
insights into the importance of food quality in addition to food quantity
(Loladze et al., 2000). These new models combine classical community
ecology models with insights from nutrient dynamics. They are largely
phenomenological but will likely become more mechanistic as our under-
standing of these processes across all levels of organization increases.
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Additional insights into food web structure can be gained by compar-
ing large food webs across different ecosystems. Such comparison has
revealed structural commonalities, and it has been proposed that com-
mon mechanisms are responsible for network structure (Dunne et al.,
2004). Recently, Brose et al. (2004) attempted to unify the relationships
between species richness and spatial scaling and between species richness
and trophic interactions to extend the spatial scale at which food web
theory applies.

Another area of activity that requires sophisticated modeling, math-
ematical analysis, and statistical tools is epidemiology or, more generally,
host-pathogen systems. The increased attention to disease dynamics stems
from the global threat of emerging and reemerging diseases, such as avian
flu, West Nile virus, or SARS. Modeling often involves much more than
simple disease dynamics as embodied in the standard models of Kermack
and McKendrick (1927). Human behavior, socioeconomic factors, and spa-
tiotemporal dynamics play a significant role and must be taken into ac-
count to adequately capture the dynamics. Increasingly, researchers are
studying diseases not only from a public health perspective but also with
respect to how they interact with the ecological environment. Known as
disease ecology, this emerging field is highly interdisciplinary, drawing
from epidemiology and ecology. Complex dynamics stemming from
multispecies interactions complicate the analysis and make predictions
difficult. Progress in this area will require collaborations among epidemi-
ologists, ecologists, statisticians, and mathematicians.

Microbial communities will increasingly be the focus of community
and ecosystem ecology studies. They provide the opportunity for true
integration across levels of organization, similar to the integration in
physical systems that resulted in a description of macroscopic phenom-
ena based on microscopic processes. Molecular biology techniques are
beginning to reveal the diversity of microbes. Large-scale genome analy-
sis is needed to assess the metabolic capacity of microbes, because pro-
teins will need to be identified and their functions understood to reveal
the metabolic pathways. Ecological studies will reveal the activity of path-
ways as a function of the biotic and abiotic environment; this is necessary
to link the metabolic potential of microbes to community-level processes.
To accomplish this integration, statistical analysis of genomic data based
on evolutionary models will need to be linked to physiological models
and, finally, to community-level models. Development of such models
will require close collaboration between experimentalists and theoreti-
cians. The importance of microbial studies is discussed in Box 7.2.

To illustrate the need for integration between the fields of evolution
and ecology in the context of community ecology, the committee revisits a
theme discussed in Chapter 6. Community ecologists largely view eco-
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BOX 7.2
Microbial Ecology

Microbes are microscopic organisms that are not visible with the na-
ked eye. They were discovered by Antony van Leeuwenhoek (1632-1723).
Prokaryotic microbes (bacteria) are the oldest organisms on earth. The fos-
sil record indicates that they evolved more than 3.8 billion years ago. Eu-
karyotic microbes, such as fungi and protozoa, appear to have evolved at
least a billion years later.

Microbes with their unrivaled metabolic capacity play an important
role in biogeochemical cycles. Since human activities have profoundly al-
tered virtually every biogeochemical cycle, it is important to understand
the roles of microbes in these cycles. Advances in molecular biology, in
particular in genomics, have greatly expanded our ability to study naturally
occurring microbes that have eluded us thus far owing to the difficulties in
culturing them. For instance, Zehr et al. (2001) recently demonstrated that
many unicellular microbes in the oxygenated region of the sea have nif
genes, indicating that oceanic nitrogen fixation might be much higher than
previously thought.

Microbes provide opportunities for integration across all levels of or-
ganization, from genes to ecosystems (Stahl and Tiedjen, 2002). Venter et
al. (2004), using shotgun sequencing of microbes in the ocean, have given
us a static glimpse into the enormous diversity of largely unknown organ-
isms that are responsible for biogeochemical cycles. Their study demon-
strated the feasibility of large, community-level genomics analysis to assess
diversity. It is a long way from the assessment of microbial diversity to
understanding the function of microbes in ecological communities. It will
require integration of genomic, proteomic, and metabolomic data with
community-level models. New modeling and statistical approaches will
need to be developed to deal with these very large and complex systems.

System theoretical approaches are currently being championed as the
key to unraveling the metabolic capacity of microbes and their role in
community dynamics. An integrative approach has been suggested
(Wolkenhauer et al., 2004). The complex interactions are often described
by block diagrams and a network, ultimately represented through differen-
tial equations, which are the mainstay of control engineers for dealing with
processes. A standard equilibrium analysis of such large systems is often
not satisfying, because the systems are so complex. Modularization of net-
works has been suggested to understand these large complex systems (Saez-
Rodriguez et al., 2004). In addition, transient dynamics might dominate
much of naturally occurring communities.

It is important to realize that revealing metabolic capacity alone will
not be sufficient. Environmental conditions affect the expression of meta-
bolic pathways (Dauner and Sauer, 2001; Dauner et al., 2001). It is thus
necessary to experimentally understand metabolic activities as a function
of environmental conditions in order to predict community dynamics. This
will require close collaboration between experimentalists and theoreticians.
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logical communities as genetically homogeneous (but, see Ford, 1964).
Over the last 10 years, an increasing number of studies have demonstrated
the importance of including evolutionary processes in studies of ecologi-
cal communities. For instance, invasive species or the assembly of novel
communities can alter ecological interactions and impose strong selection
on all members of a community (Reznick et al., 1997, 2001; Davis and
Shaw, 2001). Evolution within a predator-prey system has been studied,
for instance, by Shertzer et al. (2002) and Yoshida et al. (2003), who com-
bined theoretical and empirical studies to demonstrate that the evolution
within such a system (an algal prey and its rotifer predator) can shape
population dynamics. The empirical system showed oscillations in quali-
tative agreement with theoretical studies. However, there was quantita-
tive disagreement: Both the cycle period and the phase between predator
and prey differed from theoretical predictions. Shertzer et al. (2002) sug-
gested a new model that incorporated evolution of the algal prey and
demonstrated that rapid evolution of the prey could explain the observed
pattern. Yoshida et al. (2003) confirmed this model experimentally by
growing the algal prey with and without its predator. Their study showed
that resistance to the predator was a heritable trait and that there was a
trade-off between resistance and competitive ability. It has been suggested
that this trade-off and predation contribute to the maintenance of genetic
diversity. (See Johnson and Agrawal, 2003, for a summary of these stud-
ies.) These studies demonstrate the importance of allowing genetic varia-
tion and incorporating it into ecological models. The study of these com-
plex interactions is in its early stages. Only a combination of empirical
and theoretical studies will yield much-needed insights.

The distribution and abundance of each species is a function of the
whole community composition and the genetic composition of each indi-
vidual in the context of the community. When ecological interactions and
genetic composition of populations reciprocally affect each other, both
factors need to be considered. Antonovics (1992) proposed a new frame-
work, “community genetics” (a term suggested by J.J. Collins at Arizona
State University), which is a synthesis of evolutionary genetics and com-
munity ecology and focuses on the role of genetic variation in determin-
ing community structure (Luck et al., 2003; Neuhauser et al., 2003;
Whitham et al., 2003). Models that incorporate both ecological and genetic
factors quickly become quite complex because they must track not only
the dynamics of the species but also the genetic composition of the indi-
viduals. These models often also include a spatial component, adding to
their complexity.

A community genetics perspective seems to be particularly useful
when dealing with strong selection in a community context. As argued in
Neuhauser et al. (2003), this is particularly likely to occur during transient
dynamics following large-scale perturbations, such as habitat reduction
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or expansion. Habitat reduction due to land-use changes has been occur-
ring at an unprecedented rate. The concomitant loss of genetic diversity
can accelerate extinction. Habitat expansion can be observed in both agri-
cultural and natural systems, for instance through the introduction of a
novel organism such as a genetically modified organism or an exotic spe-
cies invasion.

The final example illustrates the need for integration at the global
scale. The effects of human activities on global climate were for the first
time illustrated by Keeling et al. (1976) when they published data from
Mauna Loa in Hawaii showing a clear increase in atmospheric carbon
dioxide over many decades. It became clear that, in order to assess changes
in the global carbon cycle, global measurements were needed. Satellite
data that became available in the 1980s made it possible to estimate net
primary production from remote sensing data. Satellites now capture a
continuous stream of spectral data at resolutions at and below the 1-kilo-
meter scale. For instance, the NASA Earth Observing System Terra satel-
lite uses the Moderate Resolution Imaging Spectroradiometer (MODIS) to
measure the spectral reflectance of terrestrial vegetation. This data set is
used to produce a weekly data set of primary production of the entire
vegetated surface, a critical quantity for assessing carbon dynamics.

Understanding carbon and nutrient cycles at global and regional
scales is a very active area of ecology that integrates across community
ecology and ecosystem ecology. As an example, predicting an increase in
temperature as a function of an increase in carbon dioxide at the spatial
scale of the whole earth was already accomplished by Arrhenius (1896). It
has proved much more difficult to make predictions at regional scales,
which requires linking vegetation models to global circulation models. To
parameterize such models, estimates of primary production at a regional
scale are needed. This will require advances in retrieving accurate esti-
mates based on spectral information, relating those estimates to measure-
ment of the actual state on the ground in a region, and incorporating the
data into ecosystem process models. This field provides clear opportuni-
ties for linking computational models to observational data.
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8

Crosscutting Themes

The organization of this report around levels of biological organiza-
tion reflects the committee’s view that the interplay between mathematics
and biology during the 21st century will be driven by biological prob-
lems. Nonetheless, the committee also recognized that this view of the
mathematics-biology interface risks the neglect of crosscutting themes—
that is, mathematical ideas or areas of productive research activity that
cut across levels of biological organization, emerging and re-emerging in
diverse biological contexts. Accordingly, it concludes its report with a few
examples of such themes, starting with some mathematical ideas that have
assumed central importance at the interface between mathematics and
biology.

THE “SMALL n, LARGE P” PROBLEM

Classical statistics largely arose in settings where typical problems
involved estimating a small set of parameters (P) from large numbers of
data points (n). Modern examples of such “small P, large n” problems
include estimating the overall inflation rate—or, perhaps, a modest num-
ber of category-specific inflation rates—from longitudinal data on the
prices of large numbers of specific items. Of course, similar problems of-
ten also arise in overtly biological contexts (e.g., analysis of life expectan-
cies or the dose-response characteristics of pharmaceutical agents); how-
ever, these applications of classical statistics to living systems are typically
far removed from considerations of underlying biological mechanism. In
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small P, large n contexts, estimates of the parameter set are expected to
improve as the number of data points increases, and much of the machin-
ery of classical statistics addresses trade-offs between the reliability of
parameter estimates and the number of samples analyzed.

In many biological research settings, the statistical challenge is quite
different. Individual experiments—for example, a microarray-based mea-
surement of the levels of thousands of messenger-RNA levels in a single
RNA sample extracted from a particular tumor—are often information-
rich. However, the number of independent measurements from which a
biologist seeks to draw conclusions (e.g., the number of tumors analyzed)
may be quite small. Similarly, geneticists are now contemplating mea-
suring the genetic variants present at ~105 sites across the genomes of
individual research subjects even though the number of individuals—for
example, the number of cases and controls in a disease-susceptibility
study—is under severe practical constraints. The challenge in these situ-
ations is analogous to attempting to reach conclusions from a moderate
number of photographs of, for example, profitable and unprofitable res-
taurants. Although increasing the number of restaurants photographed
would certainly improve the reliability of the study, presuming that the
sampling strategy was well considered, success would depend even more
heavily on strategies for representing and modeling the immense amount
of information in each photograph. Interest among biologists in prob-
lems with similar statistical properties has grown dramatically in recent
years. The committee examines this phenomenon here as a prime ex-
ample of a crosscutting mathematical theme on the interface between
mathematics and contemporary biology. It illustrates both the progress
that has been made during the past decade and the challenges that lie
ahead.

Finding Patterns in Gene-Expression Data

Although the small n, large P problem is encountered in many bio-
logical contexts, the challenges of interpreting gene-expression data pro-
vide a prototypical example that is of substantial current interest. The de-
velopment of microarray technology, which can yield the transcription
profiles of >104 genes in a single experiment, has enabled global ap-
proaches to understanding regulatory processes in normal or disease
states. Substantial work has been done on the selection and analysis of
differentially expressed genes for purposes ranging from the discovery of
new gene functions and the classification of cell types to the prediction of
clinically important biological phenotypes (Nature Genetics Supplement
21, 1999; Golub et al., 1999; Tamayo et al., 1999; Nature Genetics Supple-
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ment 32, 2002). The best of the markers that have emerged from this re-
search have already shown promise for both diagnostic and prognostic
clinical use.

Applications to tumor classification have attracted particular interest
since it has been estimated that over 40,000 cancer cases per year in the
United States present major classification challenges for existing clinical
and histological approaches. Gene-expression microarrays for the first
time offer the possibility of basing diagnoses on the global-gene-expres-
sion profile of the tumor cells. Moreover, the discovery of gene-expres-
sion patterns that are significantly correlated with tumor phenotype can
clarify molecular mechanisms of pathogenesis and potentially identify
new strategies for treatment (Shipp et al., 2002). Similar opportunities ex-
ist for many other poorly understood diseases. For example, the recent
discovery that a set of genes in the oxidative-phosphorylation pathway is
more highly expressed in the muscle biopsies of normal controls than in
those of patients with Type 2 diabetes has opened new avenues in diabe-
tes research (Mootha et al., 2003). Closer study of the most highly corre-
lated genes in this set led to the hypothesis that PGC-1α might regulate
this subset of genes, a result that was then confirmed by further labora-
tory study. By this route, an aberration in PGC-1α expression has become
a prime candidate for being a step in disease progression.

The pattern-recognition techniques required for analyzing gene-ex-
pression data and other large biological data sets are often called super-
vised and unsupervised learning. Machine-learning tools based on these
techniques, designed in collaborations between bioscientists and math-
ematical scientists, have already come into widespread use. Pattern
recognition via supervised and unsupervised learning is based on quan-
titative, stochastic descriptions of the data, sometimes referred to as as-
sociative models. These models typically incorporate few or no assump-
tions about the mechanistic basis for the patterns that they seek to
discover.

In unsupervised learning techniques, the structure in a data set is
elucidated without using any a priori labeling of the data. Unsupervised
learning can be useful during exploratory analysis. Supervised tech-
niques create models for classifying data by training on labeled members
of the classes that are to be distinguished—for example, invasive and
noninvasive tumors. Supervised techniques have an advantage over un-
supervised techniques because they are less subject to structure that is
not directly relevant to the distinction of interest, such as the laboratory
in which the data were collected. Unfortunately, training sets are not
available in many biological situations.

General machine-learning algorithms that are potentially useful in this
area of research stem from fields such as psychology and systematics. The
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algorithms have then been refined in such fields as financial modeling or
market analysis, where the number of independent instances— that is,
data points such as days of observation or individual-customer transac-
tions—is substantially larger than the number of variables measured (i.e.,
the dimension of the problem; see Hastie et al., 2001). A rule of thumb is
that the number of data points should be at least as large as the square of
the number of dimensions (Friedman, 1994). This goal is often out of reach
in biological-pattern-recognition studies: Typically, the data sets available
comprise a small number of samples per biological class (generally fewer
than 100, often only 10 or 20); however, this small number of samples
contrasts with the large number of features that characterize each
sample—for example, expression levels on the order of 104 genes). In
many situations, increasing the number of samples is simply not possible.
Hence, biological applications of machine learning often involve instances
of the small n, large P problem discussed above.

The first generation of discovery and recognition tools suitable for the
analysis of microarray data has been built, and these tools have estab-
lished that expression data can be productively mined for purposes such
as tumor classification (Golub et al., 1999; Bittner et al., 2000; Slonim et al.,
2000; Tamayo et al., 1999; Perou et al., 1999; Perou et al., 2000), chemosen-
sitivity of tumors (Staunton et al., 2001), and treatment outcome (Alizadeh
et al., 2000). The classifiers used in these papers are still heavily employed
today and are being refined to apply to cases where subtle signatures of
phenotypes such as post-treatment outcome are the endpoints. Despite
clear successes in applying machine learning to gene-expression data,
most studies have oversimplified the problem by treating genes as inde-
pendent variables. Even when coregulation is taken into account (Cho et
al., 1998; Eisen et al., 1998), existing methods still fail to capture the com-
plex patterns of interaction that characterize all biological regulatory pro-
cesses. They also address inadequately the diversity of biological mecha-
nisms that can lead to indistinguishable phenotypes.

In the context of microarray data, although measurements may de-
fine a very high-dimensional space of >10,000 genes, the expression levels
of these genes are dependent variables. In typical cases, a smaller set of
variables—on the order of a few hundred metagenes—adequately cap-
tures the process being modeled. Thus, the problem can be approached
by reducing the gene dimension in a principled way to reach the desired
small P, moderate n level with which traditional statistical theory gener-
ally deals. However, major challenges remain in learning how to use a
reduction process that actually reflects the biological mechanisms that
lead to the highly correlated expression of the members of particular sub-
sets of genes. These features of the problem highlight the need to develop
statistical frameworks that will accommodate both the presence of many
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irrelevant variables and the high interdependence of those variables that
are relevant. Next, the committee presents a brief description of the exist-
ing statistical framework.

Supervised Learning

In the supervised-learning setting, there exists a data set of samples
that belong to two different phenotypes, Class A and Class B. The goal is
to build a model that when presented with a new sample of unknown
phenotype can identify its corresponding class with high accuracy. Math-
ematically, the challenge is to infer a function F that assigns a phenotype
label A or B to a point G = (g1, g2, . . . , gn) in a high-dimensional space—the
expression levels of ~10,000 genes in each sample—from a small number
of (G, F(G)) pairs. In general, such systems are highly underdetermined.
Moreover, as discussed above, the variables are not independent: Genes
are expressed in response to the activation of biochemical pathways re-
sulting from multiple gene products. While this interdependence of the
variables is the only reason the problem is tractable, it severely limits the
utility of traditional statistical approaches for testing the significance of
observations.

Classifiers tend to overfit the data—that is, they have poor predictive
power outside the training sample because of the small number of
samples, the large number of features (high dimensionality), and noise in
the data. To address this problem, the number of variables must be re-
duced by selecting a subset of features that are most highly correlated
with the phenotype distinction. From the perspective of machine learning
and pattern recognition, the problem of optimal feature selection is intrac-
table, and biologists must be content with empirical approximations that
are tailored to the specific application (Duda et al., 2000). Traditional meth-
ods for determining the statistical significance of the features—for ex-
ample, the expression levels of particular genes—to be used as classifiers
assume a known underlying distribution of values and independence of
the features. However, a good parametric description for expression val-
ues has yet to be determined and may not exist. Gene-gene interactions
are fundamental to biological processes, and thus gene-expression data
are inherently incompatible with independence assumptions.

Some groups have used permutation-based methods to solve the
gene-selection problem (Golub et al., 1999; Slonim et al., 2000; Tusher et
al., 2001). In these methods, one compares the observed distribution of
gene correlations with phenotype against a distribution obtained by ran-
domly assigning class labels to samples. Permuting the class labels pre-
serves the gene-gene dependencies within the data set. Other methods
include using step-down adjusted-p values (Dudoit et al., 2002), general-
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ized likelihood tests (Ideker et al., 2000), Bayes hierarchical models (New-
ton et al., 2001; Baldi and Long, 2001), and combined data from replicates
to estimate posterior probabilities (Lee et al., 2000). So far, no systematic
comparisons of the error rates and statistical power of these different
methods have been published. Clearly this is an area that needs more
research and a strong formal framework.

Even the question of how many samples might be needed to improve
the accuracy of the original classifier or to provide a more rigorous statis-
tical validation of the predictive power of classifiers is difficult. Tradi-
tional power calculations (Adcock, 1997) do not address the situation
posed by gene-expression data: They estimate the confidence of an em-
pirical error estimate based on a given data set, not how the error rate
might decrease given more data. Attempts have been made to answer the
latter question using nonparametric methods and permutation testing
(Cortes et al., 1993; Cortes et al., 1995; Mukherjee et al., 2003), but formal
analysis of this problem remains an open challenge.

One widely used approach to supervised learning involves the use of
support vector machines (SVMs). SVMs are based on a variation of regu-
larization techniques for regression (Vapnik, 1998; Evgeniou et al., 2000)
and are related to a much older algorithm, the perceptron (Minsky and
Papert, 1988; Rosenblatt, 1962). Perceptrons seek a hyperplane to separate
positive and negative examples. The SVM seeks to further separate such
examples. It is trained by solving a convex optimization problem, usually
involving a large number of variables. The objective function involves a
penalty, which has to be tuned to avoid overfitting. Performance of the
SVM is reasonably measured by the proportion of misclassified cases in a
new sample. Since such a sample is not usually available, methods in-
volving splitting the original training sample—known as cross valida-
tion—are used. Other promising methods such as “boosting” are being
developed in the statistics and machine-learning communities (Hastie et
al., 2001). A basic limitation on all such methods is that, even when they
identify reproducibly observable clusters, they may not provide insight
into the biological mechanisms that underlie the process or phenotype
being studied.

Unsupervised Learning

In unsupervised learning, the data are not labeled. The goal is to de-
termine the underlying structure of a data set and to uncover relevant
patterns and possible subtypes that can then provide the starting point for
additional biological characterization. Many types of clustering algo-
rithms have been applied to expression data—for example, hierarchical
clustering (Cho et al., 1998; Eisen et al., 1998), self-organizing maps (SOM)
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(Tamayo et al., 1999), and k-means. These methods focus on the dominant
structure present in a data set while potentially missing more subtle pat-
terns that might be of equal or greater biological interest.

In contrast, there are a number of local, or bottom-up, unsupervised
methods that seek to identify and analyze subpatterns in gene expression
data: the SPLASH algorithm (Califano, 2000), conserved X motifs (Murali
and Kasif, 2003), the PLAID algorithm (Lazzeroni and Owen, 2002), the
association rules of Becquet et al. (2002), or the frequent itemsets and mod-
ules of Tamayo et al. (2004) and Segal et al. (2004). Bottom-up approaches
provide a comprehensive catalog of subpatterns and expose most or all of
the potentially interesting structure. They tackle the small n, large P prob-
lem by attempting to directly extract and isolate the relevant signals. The
challenge is the difficulty of dealing with the potentially large number of
patterns discovered by these methods, many of which are typically false
positives. The small n, large P problem remains in trying to find appropri-
ate filters to separate real patterns from noise and finding ways to as-
semble the discovered patterns into a coherent representation of the data.
Unfortunately, there is no theoretical foundation for evaluating the sig-
nificance of extracted subpatterns purely on the basis of the data.

Classical approaches to reduce the noise and dimensionality use glo-
bal decompositions or projections of the data that preserve the dominant
structure. Examples of these methods include principal-component
analysis (PCA) (Bittner et al., 2000; Pomeroy et al., 2002), singular-value
decomposition (SVD) (Alter et al., 2000; Kluger et al., 2003) and PLAID
(Lazzeroni and Owen, 2002). Unsupervised global, or top-down, ap-
proaches address the small n, large P problem by using appropriate pro-
jections from gene space to find a set of molecular coordinates that cap-
tures dominant signals. Once again, these methods often produce
difficult-to-interpret, complex, or unwieldy representations of the data.

Projection algorithms such as nonnegative matrix factorization (NMF)
(Lee and Seung, 1999; Kim and Tidor, 2003; Brunet et al., 2004) represent a
new generation of methods that attempt to project the data into the space
of a small number of metagenes, which provide representations that aid
in biological interpretation and have the potential to guide follow-up ex-
periments in the laboratory. NMF is based on a decomposition-by-parts
approach, which was introduced by Lee and Seung (1999) to identify char-
acteristic features of faces and semantic features of text. Despite its useful-
ness and practical success in clustering data, there are many open ques-
tions concerning the algorithm, its convergence properties, and the
properties of the projected representation. Recent research on supervised-
learning problems focuses on low-dimensional, nonlinear-manifold rep-
resentations (Roweis and Saul, 2000; Tenenbaum et al., 2000), or other
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nonlinear sparse representations. This work is in its infancy and has not
yet been systematically used for biological applications.

All the supervised and unsupervised approaches the committee de-
scribes here have associated questions that require further investigation.
Some of these questions follow: Is it possible to develop a formal frame-
work for evaluating the significance of features or subpatterns extracted
in a small n, large P context? What is the best way to determine the correct
number of clusters within a given data set? How does one validate clus-
tering or decomposition results? How does one compare the correctness
of two decompositions of a data set? None of these challenges is unique to
biology, but biological applications bring them to the fore.

ANALYSIS OF ORDERED SYSTEMS

Systems or processes with strong spatial or temporal order are ubiq-
uitous in biology. Examples involve the sequence of bases in the genome,
the propagation of nerve impulses, and—at a higher level of biological
organization—animal behavior. Mathematical techniques for analyzing
ordered processes have been successfully imported into biology from
other research areas. A particularly important example is the hidden
Markov model (HMM). HMMs have been used in areas such as speech
recognition since the 1970s. More recently, they have been applied with
great success in many areas of biology. HMMs require more specific mod-
eling of the structure within a data set than do the nonparametric meth-
ods discussed in the preceding section. When suitable models exist, this
requirement is a strength: Indeed, it is sometimes possible to make valid
inferences from a single instance of a biological entity such as a gene—
that is, to analyze a small n, large P problem when n = 1. This escape from
the small n, large P problem is somewhat illusory since the HMM assump-
tion enables us to use the large number of bases in the single gene to
provide us with nearly identically distributed and independent proxy
samples.

Applications of Hidden Markov Models to the Analysis of DNA,
RNA, and Protein Sequences

An HMM describes a set of states connected by transitions between
states. The transitions occur according to a Markov process. This means
that the distribution of the mth state in the series, given the preceding m –
1 states, depends only on the (m – 1)st state. However, the states them-
selves are not observed (they are hidden): They reveal themselves by emit-
ting observable variables. In speech recognition, the observed variables
might be phonemes. In DNA and protein applications, they would be the
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nucleotides or amino acids corresponding to specific sequences. All of the
parameters of the HMMs governing the emissions of variables from spe-
cific states and the transitions between states are probabilities. There are
many well-established algorithms for addressing important questions that
arise during the use of HMMs. For example, given an HMM and a se-
quence, one can determine the probability that the sequence was gener-
ated by the HMM. Calculation of these probabilities allows one to find
within a set of candidate models the HMM that is most likely to have
generated a particular sequence. One can also find the specific path of the
sequence through the HMM. This capability allows one to parse the se-
quence into the most likely arrangement of hidden states. Note, however,
that these are still associative rather than mechanistic models and are usu-
ally viewed simply as very crude approximations to reality. Two specific
applications of HMMs to biological sequences, profile HMMs for protein
families and HMMs for predicting gene structures in DNA, are discussed
below.

Profile HMMs

Profiles for protein families were introduced by Gribskov et al. (1987)
as a method for representing the variability in protein sequences of the
same family. Given an alignment of the sequences, the profile provides a
score for all possible amino acids that might occur at each position and
also a score associated with deletions and insertions at different positions.
Profile HMMs were introduced by Krogh et al. (1994) to put the concept
of a profile in a fully probabilistic framework. The hidden states, which
are the positions in the protein-family model, are hidden because any in-
dividual sequence may have insertions and deletions relative to the model.
Given a set of sequences known to be of the same protein family, expecta-
tion maximization (EM) can be used to determine the parameters of the
HMM for the family. Given a profile HMM for a specific family and a
protein sequence, one can determine the best alignment of the sequence to
the family and the probability that the protein sequence would be gener-
ated by the HMM for the family. One can then classify proteins into dif-
ferent families by comparing those probabilities.

The emission probabilities at each position of the HMM can indicate
important features of a protein family. For example, active-site residues in
enzymes tend to be highly, if not completely, conserved among all mem-
bers of a family. Positions that are all hydrophobic are likely to be in the
interior of the protein or exposed to hydrophobic environments such as
the interior of membranes. Given a set of HMMs for different protein fami-
lies and at least one known structure for each family, HMM-based meth-
ods provide an effective means for predicting the approximate structure
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of a new protein from its sequence simply by determining the family to
which the protein is most likely to belong. Of course, if the protein does
not belong to any of the established families, this approach fails, and one
must resort to ab initio methods. However, as increasing numbers of pro-
tein structures are determined and it becomes increasingly clear that most
proteins—or at least domains of proteins—fall into a limited set of struc-
tural classes, HMM-based classification methods are providing more and
more useful predictions of protein structure and function.

Despite past success, there is ample room for improvement in the de-
velopment and application of HMMs to protein families. Two important
areas for improvement deal with nonindependence in the data. Usually it
is assumed that the protein sequences from which a profile HMM is built
are independent samples from the set of sequences in the family. In actu-
ality, members of the sample set are related to each other by a phyloge-
netic tree, and means of incorporating that information into Profile HMMs
should improve their performance. The other nonindependence issue in-
volves limitations on the structures of the HMMs themselves. Profile
HMMs assume that the positions are independent of one another or, at
most, that there is a low-order Markov dependence among nearby posi-
tions. In reality, distant positions within the protein may be interacting
with one another, and the amino acid frequencies at these interacting sites
may be correlated. Such long-distance correlations occur frequently in
RNA structures and are represented by higher-order models called sto-
chastic context-free grammars. However, even stochastic context-free
grammars are limited to correlated positions that are nested. This condi-
tion does not hold for typical protein interactions; indeed, it does not even
apply to all intramolecular interactions within RNA molecules. Finding
efficient ways of taking such long-range interactions into account, while
maintaining the advantages of probabilistic models, would provide an
important improvement, especially for structure prediction.

HMMs in Gene Finding

Gary Churchill (1989) first applied HMMs to partition DNA sequences
into domains with different characteristics. Early on, David Searls (1992)
recognized the analogy between the parsing of sequences in linguistic
analysis and the determination of functional domains in DNA sequences.
By the early 1990s, David Haussler and colleagues had begun applying
HMMs to the problem of identifying the protein-coding regions in ge-
nomic DNA sequences (see Krogh et al., 1994, Stormo and Haussler, 1994;
Kulp et al., 1996). By that time, large-scale DNA-sequencing projects had
begun, and there were many DNA sequences in the databases with no
known associated genes or functions. Predicting what proteins might be
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encoded in these newly discovered DNA sequences was an important
problem.

The basic structure of an HMM maps well to the gene-prediction prob-
lem. The hidden states are the functional domains of the DNA sequence:
For example, some regions of the DNA code for protein sequence, other
regions code for untranslated portions of genes, while still others are
intergenic. Each class of regions has some statistical features that help to
distinguish it from the other classes. For example, protein-coding exons
must have an open reading frame and often use codons in a biased man-
ner, so the base-emission probabilities characterizing that state will be dif-
ferent from those characterizing introns or other classes. There is also a
clearly defined grammar for protein-coding regions: Introns must alter-
nate with exons, and intergenic regions must surround these alternating
exon-intron segments.

On the other hand, some aspects of gene structure are not captured by
simple HMM architectures. For example, when introns are removed, the
two joined exons must remain in-frame, so the HMM has to maintain a
memory of the reading frame from the previous exon as it passes over the
intron. Furthermore, exons and introns have different length distributions;
neither is simply geometric, as would be modeled by a simple HMM. Fi-
nally, the boundaries between domains are often indicated by signals in
the DNA sequence—that is, specific sequence motifs that are themselves
modeled by the probability distributions of bases at different positions
within the motifs.

Gene-prediction accuracy can be improved by incorporating other
evidence that is not derived from the DNA sequence alone—for example,
similarities between the protein sequence inferred from the predicted
gene structure and previously known protein sequences. To utilize all
the different kinds of information that are useful for gene prediction and
to capture the details of gene structures, HMMs have been extended to
generalized HMMs (GHMMs) (Kulp et al., 1996; Burge and Karlin, 1997).
These new models, which couple classical HMMs to machine-learning
techniques, provide significantly better predictions than previous
models. Recently, the methodology was extended to predict simulta-
neously gene structure in two homologous sequences (Korf et al., 2001;
Meyer and Durbin, 2002; Alexandersson et al., 2003). Since corresponding
(orthologous) genes in closely related organisms are expected to have
similar structures, adding the constraint that the predicted structure be
compatible with both sequences can significantly improve accuracy.

Despite these advances, there is still much room for improvement in
gene prediction. Overall accuracy, even when using two species, is far
from 100 percent. Increasingly, the failures of gene-prediction methods
are due to the inherent biological complexity of the problem. Recent data
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have emphasized that a region of DNA may code for multiple protein
variants owing to alternative splicing. Indeed, it now appears that the
majority of human genes are alternatively spliced to give two or more
protein products. This biological reality means that the basic assumption
of gene-prediction HMMs—that any particular base in the sequence de-
rives from a unique hidden state rather than playing multiple functional
roles—is incorrect. It may be possible to extend HMMs to deal with such
situations by making explicit states that accommodate dual roles or by
predicting alternative products from the optimal and suboptimal predic-
tions of the HMMs.

Much remains to be learned about the various classes of DNA seg-
ments and the features that define them. In particular, regulatory regions
pose major challenges. These regions are composed of sets of binding sites
for regulatory proteins, organized into modules that control gene expres-
sion. More experimental information is needed to incorporate the proper-
ties of regulatory regions into gene-prediction models. However, eventu-
ally it may be possible not only to predict what proteins are encoded by a
given DNA region but also to predict the conditions under which they are
expressed.

APPLICATIONS OF MONTE CARLO METHODS IN
COMPUTATIONAL BIOLOGY

The early development of dynamic Monte Carlo methods (Metropolis
et al., 1953) was motivated by the study of liquids and other complex
physical systems. Increasing computational power and theoretical ad-
vances subsequently expanded their application throughout many areas
of science, technology, and statistics. The use of dynamic Monte Carlo
methods in statistics began in the early 1980s, when Geman and Geman
(1984) and others introduced them in the context of image analysis. It was
quickly realized that these methods were also useful in more traditional
applications of parametric statistical inference. Tanner and Wong (1987),
as well as Gelfand and Smith (1990), pointed out that such standard statis-
tical problems as latent-class models, hierarchical-linear models, and cen-
sored-data regression all have structures allowing the effective use of it-
erative sampling when estimating posterior and predictive distributions.
Within the past decade, there has been an explosion of interest in the ap-
plication of Monte Carlo methods to diverse statistical problems such as
clustering, longitudinal studies, density estimation, model selection, and
the analysis of graphical systems (for reviews, see Tanner (1996); Gilks et
al. (1996); Liu (2001)). Concomitant with the spread of Monte Carlo meth-
ods in model-based analysis, there has been a general increase in reliance
on computational inference in many areas of science and engineering.
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Computational inference based on Bayesian or likelihood models often
leads to large-scale Monte Carlo sampling as a global optimization strat-
egy. In summary, in areas extending far beyond biology, Monte Carlo
sampling has become an important tool in scientific computation, particu-
larly when computational inference is based on statistical models. The
committee describes below some uses of Monte Carlo methods in compu-
tational biology and discusses the limitations on current methods and
possible directions for future research.

Gibbs Sampling in Motif Finding

The identification of binding sites for transcription factors that regu-
late when and where a gene may be transcribed is a central problem in
molecular biology. Beginning in the late 1980s, this problem was formu-
lated as a statistical-inference problem by Gary Stormo, Charles
Lawrence, and others. It was assumed that the upstream regions of a set
of coregulated genes are enriched in binding sites that have nucleotide
frequencies different from the background sequences. In general, neither
the site-specific nucleotide frequencies (the motif model) nor the loca-
tions of the sites are known. Currently, the most successful algorithm for
the simultaneous statistical inference of the motif model and the sites
involves application of a version of the Monte Carlo algorithm called the
Gibbs sampler (Lawrence et al., 1993). Computational biologists are pres-
ently working to extend this basic approach to incorporate cooperative
interactions between bound transcription factors and to analyze se-
quences from multiple species that are evolutionarily related.

Inference of Regulatory Networks

Probabilistic networks were developed independently in statistics
(Lauritzen and Spiegelhalter, 1988) and computer science (Pearl, 1988).
Directed-graph versions of probabilistic networks, known as Bayesian
networks, have played an important role in the formulation of expert sys-
tems. Recently, Bayesian networks also proved to be useful as models of
biological regulatory networks (Friedman et al., 2000). In these networks,
the genes and proteins in a regulatory network are modeled as nodes in a
directed graph, in which the directed edges indicate potential causal in-
teractions—for example, gene A activates gene B. Given the network struc-
ture—that is, the graph structure specifying the set of directed edges—
there are efficient algorithms for inferring the remaining parameters of
the network. If the network structure is unknown, inferring it involves
sampling from its posterior distribution, given the data. This computation
is challenging, since the space of all possible network structures is
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superexponentially large. The development of Monte Carlo schemes ca-
pable of handling this computation would be of great value in computa-
tional biology.

Sampling Protein Conformations

The protein-folding problem has been a grand challenge for computa-
tional molecular bioscientists for more than 30 years, since Anfinsen dem-
onstrated that the sequences for some proteins determine their folded con-
formations (Sela et al., 1957). To formulate the computational problem,
one sets up an energy function based on considerations of bonding geom-
etry, as well as electrostatic and van der Waals forces. Possible conforma-
tions of the protein (i.e., the relative spatial positions of all its heavy at-
oms) can then be sampled either by integrating Newton’s second law (i.e.,
carrying out a molecular dynamic calculation) or by Monte Carlo sam-
pling of the corresponding Boltzmann distribution (for a review of this,
see Frenkel and Smit, 1996). This problem is attractive both because it is
intrinsically important for understanding proteins and because computa-
tional results can be compared with experimentally solved structures.
Hence, unlike in many other areas of predictive modeling in biology, there
are easily applied, objective criteria for comparing the relative accuracy of
alternative models. At present, de novo computation of native protein
structures is not feasible. Thus, the near-term focus of most research in
this area is on gaining an improved understanding of the mechanism of
protein folding (Hansmann et al., 1997; Hao and Scheraga, 1998). Monte
Carlo methods are important in these investigations because they provide
wider sampling of the conformation space than do conventional methods.
The study of folding-energy landscapes is generally based on a simplified
energy function—for example, effects of entropy in the solvent are incor-
porated into artificial hydrophobic terms in the energy function—and a
greatly simplified conformation space. Even with such simplifications,
Monte Carlo methods are often the only way to sample this space.

LESSONS FROM MATHEMATICAL THEMES OF
CURRENT IMPORT

This discussion of flourishing applications of machine learning, hid-
den Markov models, and Monte Carlo sampling illustrates how particu-
lar mathematical themes can gain prominence in response to trends in
biological research. The advent of high-throughput DNA sequencing and
gene-expression microarrays brought to the forefront of biological re-
search large amounts of data and many classes of problems that de-
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manded the importation of broad, powerful mathematical formalisms.
Continued reliance on ad hoc solutions to particular problems would have
impeded the development of whole areas of biology. In the instances dis-
cussed, the biological problems that needed solution were sufficiently
analogous to problems previously encountered in other fields that rel-
evant mathematical formalisms were available. As these formalisms came
into widespread use in the biosciences, particular limitations, associated
in many instances with the general characteristics of the biological prob-
lems to which they were applied, became evident and stimulated new
mathematical research on the methods themselves.

The committee expects this dynamic to recur as mathematical biology
matures. Indeed, the committee attached more importance to the process
than to its particular manifestations in the 1990s and early 2000s. While
the techniques described here have broad importance at the moment, the
committee does not expect them to dominate the biosciences over the long
term. Indeed, as it did in the Executive Summary and Chapter 1, “The
Nature of the Field,” the committee once more cautions against drawing
up a list of mathematical challenges that are not grounded in specific bio-
logical problems. Both the biosciences and mathematics have strange ways
of surprising us. Mathematics can be useful in ways that are not predict-
able. For example, Art Winfree’s use of topology provided wonderful in-
sights into the way many oscillatory biological processes work (Winfree,
1983). Similarly, De Witt Sumners’s use of topology to understand aspects
of circular DNA (Sumners, 1995) and Gary Odell’s topological observa-
tions about the gene network behind segment polarity were quite unex-
pected (von Dassow et al., 2000). Yet, even though topological arguments
have provided biologists with powerful insights, the committee did not
conclude that topology should be prioritized for further development be-
cause of its potential to contribute to biology. Instead, the committee ex-
pects that biological problems will continue to drive the importation and
evolution of applicable mathematics. Then, as general principles emerge,
they will be codified at the appropriate level of generality. For machine
learning, HMMs, and Monte Carlo sampling, this process is well under
way. Indeed, these powerful methods are now well established in the
toolkits of most computational biologists and are routinely taught in in-
troductory graduate-level courses covering computational biology. Other
methods will follow, just as others went before. The greatest enabler of
this process will be research programs and collaborations that confront
mathematical scientists with specific problems drawn from across the
whole landscape of modern biology.
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PROCESSING OF LOW-LEVEL DATA

The purpose of the current chapter, “Crosscutting Themes,” is to call
attention to issues that might have been neglected if the committee had
relied entirely on levels of biological organization to structure this report.
By discussing examples of mathematical themes that are important at
many levels of biological organization, the committee accomplishes that
purpose. Another quite different crosscutting theme is the importance of
low-level data processing. Indeed, one could argue that the most indis-
pensable applications of mathematics in biology have historically been in
this area. Furthermore, the importance of low-level data processing in bi-
ology appears likely to grow. Rapid advances in technologies such as op-
tics, digital electronics, sensors, and small-scale fabrication ensure that
biologists will have access to ever more powerful instruments.

Nearly all the data that biologists obtain from these instruments has
gone through extensive analog and digital transformations. Because these
transformations improve signal-to-noise ratios, correlate signals with real-
world landmarks, eliminate distortions, and otherwise add value to the
physical output of the primary sensing devices, they are often the key to
success during instrumentation development. The continued involvement
of mathematicians, physicists, engineers, chemists, and bioscientists in
instrumentation development has great potential to advance the biologi-
cal sciences. Mathematical scientists are essential partners in these col-
laborations. Indeed, many of the challenges that arise in low-level data
processing can only be met by applying powerful, abstract formalisms
that are unfamiliar to most bioscientists. A few examples, discussed be-
low, illustrate current research in this area.

In optical imaging, the development of two-photon (or, more gener-
ally, multiphoton) fluorescence microscopy is already having a signifi-
cant impact on biology (So et al., 2000). This technique, in which molecu-
lar excitation takes place from the simultaneous absorption of two or more
photons by a fluorophore, offers submicron resolution with relatively little
damage to samples. The latter feature is of particular importance in biol-
ogy since there is growing interest in observing living cells as they un-
dergo complex developmental changes. The sensitivity of two-photon
microscopy, in contrast to conventional fluorescence microscopy, is more
dependent on peak illumination of the sample than on average illumina-
tion; hence, pulsed-laser light sources can be used to provide high instan-
taneous illumination while maintaining low average-power dissipation
in the sample. Significant progress has been made in using two-photon
methods to image cells, subcellular components, and macromolecules.
Substantial improvements in sensitivity remain possible since in current
instruments, only a small fraction of emitted photons reaches the detec-
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tor. This low sensitivity, among other problems, limits the time resolution
of two-photon microscopy. Computation and simulation will play a key
role in efforts to increase sensitivity by optimizing the light path and im-
proving detectors. Discussing the potential of future improvements in the
sensitivity of two-photon microscopy, Fraser (2003) observed that “with a
combined improvement of only ten-fold, today’s impossible project can
become tomorrow’s routine research project.” This rapid progression from
the impossible to the routine is the story of much of modern experimental
biology.

An entirely different class of imaging techniques, broadly referred to
as near-field microscopy, has also made great strides in recent years.
Steadily improving fiber-optic light sources and detectors have been the
critical enabling technologies. Optical resolutions of 20 to 50 nm are
achievable with ideal samples, dramatically breaching the wavelength
limit on the resolution of traditional light microscopes. Nonetheless, near-
field microscopy is difficult to apply in biology because of the irregular
nature of biological materials. Despite these difficulties, Doyle et al. (2001)
succeeded in imaging actin filaments in glial cells, and it is reasonable to
expect further progress, based in part on improved computational tech-
niques for extracting the desired signal from the noise in near-field data.

At still higher spatial resolution, many new techniques have been in-
troduced for the structural analysis of biological macromolecules. Ex-
amples include high-field NMR, cryo-electron microscopy (cryo-EM)
(Henderson, 2004; Carragher et al., 2004), time-resolved structural analy-
sis based on physical and chemical trapping (Hajdu et al., 2000), small-
angle scattering (Svergun et al., 2002), and total-internal-reflection fluo-
rescence microscopy (Mashanov et al., 2003). Cryo-EM has achieved
0.4-nm resolution for two-dimensional crystals and may soon achieve that
capability for single particles. One problem with all imaging methods is
the lack of rigorous validation methods for determining the reliability of
determined structures. Henderson (2004) emphasized this point, stating
that the lack of such methods is “probably the greatest challenge facing
cryo-EM.” The mathematical sciences have a clear role to play in address-
ing this challenge.

Hyperspectral imaging is the final example here of promising tech-
nologies that could be incorporated into many types of biological instru-
mentation. This technology involves measuring the optical response of a
sample over an entire frequency range rather than at one, or a few, se-
lected frequencies. In hyperspectral detectors, each pixel contains a spec-
trum with tens to thousands of measurements and allows for far more
detailed characterization of a sample than could be obtained from data
collected at a single frequency. Hyperspectral imaging is already being
used for microscopy (Sinclair et al., 2004; Schultz et al., 2001), pathological
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studies (Davis et al., 2003), and microarray analysis (Sinclair et al., 2004;
Schultz et al., 2001). Sinclair et al. (2004) recently developed a scanner
with high spatial resolution that records an emission spectrum for each
pixel over the range 490-900 nm at 3-nm intervals. These investigators
used multivariate curve-resolution algorithms to distinguish between the
emission spectra of the components of multiple samples. Further math-
ematical developments have the potential to enhance instrument design
and performance for diverse applications. Similar comments apply to
many aspects of imaging technology. Indeed, the committee believes that
one of the important goals of the next decade in instrumentation should
be to improve the quantitation achievable in all forms of biological imag-
ing. Nearly all applications of the mathematical sciences to biology will be
promoted by improved instrumentation that lowers the cost of acquiring
reliable quantitative data and increases the collection rates.

EPILOGUE

This brief discussion of the role of the mathematical sciences in the
development of instrumentation is a suitable note on which to conclude
this report since it emphasizes the primacy of data in the interplay be-
tween mathematics and biology. Mathematical scientists, and the funding
agencies that support them, should be encouraged to take an interest in
the full cycle of experimental design, data acquisition, data processing,
and data interpretation through which bioscientists are expanding their
understanding of the living world. Applications of the mathematical sci-
ences to biology are not yet so specialized as to make this breadth of view
impractical. An illustrative case is that of Phil Green, whose training be-
fore an early-career switch to genetics was in pure mathematics. During
the Human Genome Project, he made key contributions to problems at
every level of genome analysis: the phred-software package transformed
large-scale DNA sequencing by attaching statistically valid quality mea-
sures to the raw base calls of automated sequencing instruments (Ewing
and Green, 1998; Ewing et al., 1998); phrap, consed, and autofinish soft-
ware sheperded these base calls all the way to finished-DNA sequence
(Gordon et al., 1998; Gordon et al., 2001); then, in analyzing the sequence
itself, Green contributed to problems as diverse as estimating the number
of human genes (Ewing and Green, 2000), discovering the likely existence
of a new DNA-repair process in germ cells (Green et al., 2003), and mod-
eling sequence-context effects on mutation rates (Hwang and Green, 2004).

As this and many other stories emphasize, applications of the math-
ematical sciences to the biosciences span an immense conceptual range,
even when one considers only one facet of the biological enterprise. No
one scientist, mathematical or biological specialty, research program, or
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funding agency can span the entire range. Instead, the integration of di-
verse skills and perspectives must be the overriding goal. In this report,
the committee seeks to encourage such integration by putting forward a
set of broad principles that it regards as essential to the health of one of
the most exciting and promising interdisciplinary frontiers in 21st cen-
tury science.
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